
Vol.:(0123456789)

Technology, Knowledge and Learning
https://doi.org/10.1007/s10758-019-09423-8

1 3

ORIGINAL RESEARCH

An Emerging Technology Report on Computational Toys
in Early Childhood

Megan Hamilton1 · Jody Clarke‑Midura1 · Jessica F. Shumway2 · Victor R. Lee3

© Springer Nature B.V. 2019

Abstract
This emerging technology report describes computational toys as tools for learning and
building computational thinking (CT) skills in young children. We present both a frame-
work to categorize computational toys as well as a separate framework to evaluate the toys’
effectiveness for teaching CT skills. We then apply our frameworks to thirty computational
toys targeting children ages 5 and 6 years old. By identifying physical and ideational fea-
tures of computational toys, educators and researchers will be able to apply our findings to
practice and expand upon CT pedagogical research in young learners. Our future research
goals include to investigate how CT skills can be observed and measured in early child-
hood education.

Keywords Computational thinking · Problem solving · Programming · STEM toys · Early
childhood

1 Introduction

An influx of commercial STEM education toys, like Cubetto, are being marketed as
tools to teach computer programming and problem-solving skills. These computational
toys offer a variety of programming interfaces. For example, some use block-based
programming, some utilize pictorial-based programming, and others are comprised of
physical building blocks that provide a more tactile experience for the learner. Manufac-
turers promote computational toys with claims that children will improve their thinking
and coding skills by interacting with them. For instance, Primo Toys advertises Cubetto
(Fig. 1a, b), a wooden Montessori-based robot, as a learn-to-code toy that is “tangible,
fun and age-appropriate,” and as children interact with the toy they are able to learn
the “fundamentals of coding including algorithms, functions, and debugging” (“Cubetto
Universe,” n. d.). Yet, there is little evidence to support these assertions. Oftentimes,

 * Megan Hamilton
 megan.hamilton@usu.edu

1 Instructional Technology and Learning Sciences, Utah State University, Logan, UT, USA
2 School of Teacher Education and Leadership, Utah State University, Logan, UT, USA
3 Graduate School of Education, Stanford University, Stanford, CA 94305, USA

http://orcid.org/0000-0002-1125-305X
http://orcid.org/0000-0001-5434-0324
http://orcid.org/0000-0001-7655-565X
http://orcid.org/0000-0001-6434-7589
http://crossmark.crossref.org/dialog/?doi=10.1007/s10758-019-09423-8&domain=pdf

 M. Hamilton et al.

1 3

educational technologies are developed so quickly that they bypass the development of
research-informed pedagogical practices associated with them (Manches and Plowman
2017). There is a need for research to unpack how children interact with computational
toys, what skills children are improving, and what, if any, impact these interactions have
on childhood development and learning. Among the first steps toward these research
goals, it is necessary to better understand the design elements and features of these
computational toys.

In this emerging technology report, we discuss our early research on categorizing
computational toys and present a framework to summarize the features of the toys for
teaching computational thinking (CT) skills, or the “range of analytical mental tools
that are inherent to the field of computer science” such as abstraction and heuristic rea-
soning (Bers 2018, p. 3). In the following sections, we provide context for our work,
introduce a framework for categorizing computational toys, and provide findings from
an analysis of thirty different toys commonly found in the commercial marketplace.

2 Background

Ideas involving CT date as far back as the 1950s (Tedre and Denning 2016). Papert
(1980) was among the first to describe CT in his work related to the Logo programming
language and the Logo turtle, an educational robot. In the early 2000s, CT was revital-
ized by Jeannette Wing as she refined its definition and urged for CT to become a part
of every child’s abilities (Wing 2006, 2008). Wing (2006) defined CT as the systematic
thought process learners utilize as they are “solving problems, designing systems, and
understanding human behavior by drawing on the concepts fundamental to computer
science” (Wing 2006, p. 33). Prior to Wing (2006), early contributions from scholars
strengthened the early foundations of CT by discussing how computer programming can
enhance problem-solving abilities (Clements and Gullo 1984; DiSessa 2001; Harel and
Papert 1990). In the following sections, we further contextualize CT by (1) discussing
CT and its implications in K-12 education, (2) examining definitions of CT that have
informed our work, and (3) exploring various tools used to teach CT in informal and
formal learning environments.

Fig. 1 a and b Sarah and Ryan making a connection between their code instructions (plastic pieces on the
panel board) to the position of their robot and the distance to the goal on the map

An Emerging Technology Report on Computational Toys in Early…

1 3

2.1 CT in K‑12 Education

National Research Council (NRC 2010) conducted workshops on CT and subsequently
released an NRC report on cognitive and educational implications of CT, including appli-
cations of CT across disciplines and the relationship of CT to mathematics and engineering
(NRC 2010). A number of participants of the NRC’s workshop on CT agreed that a logical
next step of future workshops would be to focus on pedagogical aspects of CT (NRC 2010).
As a result, educational leaders’ early discussions of CT sparked conversations as to what
CT should look like in K-12 classrooms (Barr and Stephenson 2011). Consequently, the
Computer Science Teachers Association (CSTA) and the International Society for Tech-
nology in Education (ISTE) created a task force of leaders from education and industry to
develop a K-12 computer science (CS) framework (CSTA Standards Task Force 2011) as
well as an operational definition of CT (CSTA/ISTE 2011). According to the CSTA/ISTE
(2011), computational thinking (CT) is a problem-solving process that includes (but is not
limited to) the following characteristics:

• Formulating problems in a way that enables the use of a computer and other tools to
solve them

• Logically organizing and analyzing data
• Representing data through abstractions such as models and simulations
• Automating solutions through algorithmic thinking (a series of ordered steps)
• Identifying, analyzing, and implementing possible solutions with the goal of achieving

the most efficient and effective combination of steps and resources
• Generalizing and transferring this problem-solving process to a wide variety of prob-

lems

Grover and Pea (2013) conducted a review of CT in K-12 education. After examining
a broad range of definitions and perspectives on CT, they argued for a dramatic shift from
defining CT to operationalizing and putting CT into practice (Grover and Pea 2013). Oper-
ationalizing CT continues to be supported by organizations like the CSTA and the Asso-
ciation for Computing Machinery (ACM) as they strive to develop and disseminate CT
resources and educator toolkits across multiple K-12 disciplines. CSTA and ACM (2016)
assembled an additional task force to revise CS standards to reflect recommended changes
as well as align them with other K-12 standards such as the Common Core for Math and
Science (CSTA 2016) as well as the Next Generation Science Standards (NGSS Lead
States 2013). An updated version of the CSTA K-12 Computer Science Standards was
released in 2017 (CSTA 2017). Since then, some states (e.g. Florida and Massachusetts)
have drafted their own versions of computer science (CS) standards to reflect the 2017
CSTA CS standards, while a few states (e.g. the state of Washington) have outright adopted
CSTA standards as their own (State of Computer Science Education 2018). In our analysis
of coding toys’ features, we use the constructs coming out of this work on standards to con-
sider how features may support students’ development of CT.

2.2 Defining CT

Meanwhile, educational leaders have yet to reach a consensus on a shared definition of
CT (Denning 2017). Certain definitions of CT remain closely connected to computing

 M. Hamilton et al.

1 3

disciplines, namely computer science. For example, Brennan and Resnick (2012) provided
a framework for studying and assessing the development of CT in young learners as they
programmed using Scratch, an online community and authoring environment. Their CT
definition consists of three key dimensions including: (1) computational concepts (2) com-
putational practices and (3) computational perspectives (Brennan and Resnick 2012). Over
a span of several years and various Scratch workshops, Brennan and Resnick (2012) iden-
tified common computational concepts (e.g. sequences, loops, parallelism, events, condi-
tionals, operators, and data) young learners utilized as they designed and programmed in a
virtual programming environment.

Some definitions for CT have been created within the context of other curricular dis-
ciplines outside of CS. For instance, Weintrop et al. (2016) performed a review of CT lit-
erature and interviewed experts in mathematics and science in order to develop a taxo-
nomic definition of CT consisting of four categories: (1) data practices (2) modeling and
simulation practices (3) computational problem-solving practices and (4) systems thinking
practices. Others have linked CT with engineering education (Ehsan and Cardella 2017;
Wing 2006). For example, Ehsan and Cardella (2017) identified CT competencies such as
abstraction, algorithm and procedure, debugging/troubleshooting, pattern recognition, and
simulation while observing first-grade students complete an engineering design task in an
informal learning context.

While the above definitions have been linked to specific disciplines, other CT definitions
have been developed using more of a cross-disciplinary approach. As a case in point, Shute
et al. (2017) examined theoretical and empirical studies related to CT in K-12 education,
and compared many characteristics and definitions of CT across a variety of disciplines.
Based on their analysis, Shute et al. (2017) developed a definition for CT as the “concep-
tual foundation required to solve problems effectively and efficiently” (p. 151). Included
with their definition, Shute et al. (2017) analyzed various CT concepts and categorized
commonly identified CT skills into six main facets: decomposition, abstraction, algorithm
design, debugging, iteration, and generalization. We used the definitions and facets by
Shute et al. (2017) to support our categorization and analysis of coding toys.

2.3 Tools for Teaching CT

A variety of media, or tools, have been utilized to teach computational thinking skills. Some
of the first tools used to teach computational thinking were related to Papert’s work with the
Logo educational programming language. Papert and his collaborators, Cynthia Solomon
and Wallace Feurzeig, developed Logo as a child’s tool for programming and commanding
a robot turtle to physically move around a given space (Solomon and Papert 1976). Newer
versions of the Logo programming environment allowed for a digital version of the robot
turtle to be commanded within a programming environment. Papert’s work with the Logo
turtle helped to inspire many of the educational programming languages children use today,
including Scratch (Resnick et al. 2009) and Scratch Jr. (Flannery et al. 2013).

Papert’s work also inspired various other technological tools including educational
toys and apps designed for young children. A wide spectrum of computationally-themed
manipulatives and toys, ranging from digital versions to completely screen-less options,
are available to teach young learners (Sullivan and Heffernan 2016). For instance, Primo
Toy advertises on their website that Cubetto is not only based on Montessori philosophies,
but it was also inspired by the Logo turtle (“Cubetto Universe,” n. d.). In addition to her

An Emerging Technology Report on Computational Toys in Early…

1 3

collaborative work with Scratch Jr., Bers helped to co-found KinderLab Robotics, where
they currently work to provide tangible, screen-free robotics kits (e.g. KIBO) for young
children (Bers 2010).

3 Framework and Coding Scheme

Scholars and educators welcome the availability and diversity of computational devices,
including programming tools like Dash and Dot, Robot Turtles, and Cubetto, yet much can
be done to appropriately and effectively integrate these devices within classroom settings
and K-12 curriculum (Manches and Plowman 2017). Moreover, further research is needed
in order to determine whether or not such activities are developmentally appropriate and
how they facilitate computational thinking in young children (Bers et al. 2014).

Yu and Roque (2018) surveyed physical, virtual, and hybrid computational kits (e.g.
Cubetto, Scratch Jr., KIBO, etc.) and examined how each kit supported various computa-
tional thinking concepts and practices using Brennan and Resnick’s (2012) CT framework.
Ehsan et al. (2017) examined several digital media, specifically educational Apps (e.g.
Daisy the Dinosaur, Kodable, Scratch Jr., etc.), and evaluated how each App supported CT
competencies such as abstraction, debugging/troubleshooting, pattern recognition, simula-
tions, etc. In this paper, we present our framework for analyzing computational-themed
toys (or physical objects for children to play with) and the CT skills they are designed to
teach.

In previous work, we evaluated the physical and ideational features of twenty different
computational-themed toys (Hamilton et al. 2018). In this report, we extend our previous
work by (1) expanding our categories of physical features to include dichotomous coding
schemes as well as (2) adding CT skills to our classification scheme of ideational features.
For this report and future research, we adopt and build upon Shute et al.’s (2017) definition
of CT. To develop our definition of CT skills, we modified Shute et al.’s (2017) categoriza-
tion of CT skills to include additional CT facets such as parallelism (Brennan and Resnick
2012) and efficiency.

3.1 Physical Features

Physical features of computational toys encompass visually-perceived aspects of toys that
can be physically manipulated (e.g. manipulative controls on the body of the robot). We
categorized physical features as how computational and programming skills are physi-
cally instantiated (Hamilton et al. 2018). For example, Cubetto has physical tiles that afford
grasping and placing tiles within specific locations on the instruction board. Once the child
hits the blue (execution) button, the robot will follow the order of the instruction tiles in
sequence as it moves from start to finish. Not all computational toys have manipulable tiles,
however. Some toys, like Robot Mouse, have physical buttons on the actual device that can
be pressed in order for the user to “program” the robot to move in specified directions.

For this paper, we continue to use our first (and above mentioned) definition of physical
features. However, we have amended our categorization scheme to include a ‘dichotomous
key’ for evaluating CT toys’ features based on coding the physical components of the toys
(Table 1). In nature, living things exhibit a varying assortment of characteristics, and as a
way to categorize and identify living things scientists have developed dichotomous keys to
identify an organism at the taxonomic level. Similar to organisms, real-world objects can

 M. Hamilton et al.

1 3

Ta
bl

e
1

 D
ic

ho
to

m
ou

s k
ey

 fo
r c

om
pu

ta
tio

na
l t

oy
s’

 p
hy

si
ca

l f
ea

tu
re

s

D
is

cl
ai

m
er

: I
f a

 to
y

is
 fo

un
d

to
 h

av
e

ch
ar

ac
te

ris
tic

s o
f m

ul
tip

le
 to

y
ca

te
go

rie
s,

it
be

lo
ng

s t
o

th
e

“B
le

nd
ed

”
ca

te
go

ry
 (i

.e
. B

lu
e-

bo
t)

1
a.

 T
he

 to
y(

s)
 a

re
 m

ad
e

of
 e

le
ct

ro
ni

c
co

m
po

ne
nt

s
G

o
to

 st
at

em
en

t #
2

b.
 T

he
 to

y(
s)

 a
re

 m
ad

e
of

 n
on

-e
le

ct
ro

ni
c

co
m

po
ne

nt
s

Th
e

to
y

be
lo

ng
s t

o
th

e
“B

oa
rd

 G
am

es
 a

nd
 B

oo
ks

”
ca

te
go

ry
 (e

.g
. R

ob
ot

 R
ac

es
)

2
a.

 T
he

 to
y(

s)
 a

re
 ro

bo
tic

 in
 n

at
ur

e,
 m

ea
ni

ng
 it

 is
 a

 m
ec

ha
ni

ca
l d

ev
ic

e
ca

pa
bl

e
of

 b
ei

ng

pr
og

ra
m

m
ed

 to
 c

ar
ry

 o
ut

 a
 se

rie
s o

f a
ct

io
ns

G
o

to
 st

at
em

en
t #

3

b.
 T

he
 to

y(
s)

 a
re

 n
ot

 ro
bo

tic
 in

 n
at

ur
e

Th
e

to
y

be
lo

ng
s t

o
th

e
“N

on
-R

ob
ot

ic
 E

le
ct

ro
ni

cs
”

ca
te

go
ry

 (e
.g

. P
uz

zl
et

s)
3

a.
 T

he
 ro

bo
tic

 to
y(

s)
 a

re
 sc

re
en

le
ss

 a
nd

 h
av

e
ta

ng
ib

le
 fe

at
ur

es
G

o
to

 st
at

em
en

t #
4

b.
 T

he
 ro

bo
tic

 to
y(

s)
 a

re
 c

on
tro

lle
d

re
m

ot
el

y
us

in
g

an
 a

pp
 o

r s
cr

ee
n-

ba
se

d
te

ch
no

lo
gy

Th
e

to
y

be
lo

ng
s t

o
th

e
“S

cr
ee

n-
B

as
ed

 R
ob

ot
”

ca
te

go
ry

 (e
.g

. D
as

h
an

d
D

ot
)

4
a.

 T
he

 ro
bo

tic
 to

y(
s)

 h
av

e
bu

tto
ns

 o
r t

ac
til

e
co

nt
ro

ls
 fo

un
d

on
 th

e
bo

dy
 o

f t
he

 ro
bo

t i
ts

el
f

Th
e

to
y

be
lo

ng
s t

o
th

e
“B

ut
to

n-
O

pe
ra

te
d

Ro
bo

t”
 c

at
eg

or
y

(e
.g

. B
ee

-B
ot

)
b.

 T
he

 ro
bo

tic
 to

y(
s)

 o
r k

it
ha

s e
xt

er
na

l m
an

ip
ul

at
iv

e
bl

oc
ks

, t
ile

s,
an

d/
or

 p
ie

ce
s t

ha
t

co
nt

ro
l t

he
 ro

bo
t

Th
e

to
y

be
lo

ng
s t

o
th

e
“R

ob
ot

 w
ith

 T
an

gi
bl

e
In

te
rfa

ce
”

ca
te

go
ry

 (e
.g

. C
ub

et
to

)

An Emerging Technology Report on Computational Toys in Early…

1 3

be grouped together based on their characteristics. Computational toys also exhibit a great
deal of variation; therefore, we propose a guide to classifying computational toys based on
their physical features (Table 1).

Thus, we group computational toys into the following physical categories: (1) Board
Games and Books, (2) Non-Robotic Electronics, (3) Screen-Based Robot, (4) Button-Oper-
ated Robot, (5) Robot with Tangible Interface, and (6) Blended. For example, let us con-
sider a toy called Bee-bot. Bee-bot is a robotic floor robot shaped like a bee. It has direc-
tional keys, or manipulative controls, on its back. Therefore, we categorize the Bee-bot as a
‘Button-Operated Robot.’ However, Blue-bot, a newer generation of the Bee-bot, has blue-
tooth access and can be programmed using app-based technology (e.g. iPad). Blue-bot also
has manipulative controls on its body. Because Blue-bot has physical features of multiple
categories we would classify it as a “Blended” computational toy.

Our physical feature classification allows us to group toys based on whether or not they
have an internal or external interface, and if they are controlled by an external app. Our
classification applied to thirty toys is presented in Table 2.

In Fig. 2, we present the results of our evaluation of thirty computational toys based
on their physical features. The thirty toys were selected for review based on the following
criteria: (1) the toy is marketed to target five- and 6-year-old children and (2) the toy is
marketed as teaching computational or programming skills. We searched for publications
in the Education Source, ERIC, and PsychINFO using keywords such as “computational
toys,” “programming,” “early childhood,” “education,” and “STEM” to search for research
projects affiliated with computational toys. We searched for additional computational toys
using online retail platforms such as Amazon and Target. We used the following keywords,
as recommended by Amazon, to search for toys: “coding toys,” “programming toys,” and
“STEM toys.” Additionally, we also searched for computational toys funded by Kickstarter
campaigns (e.g. Unruly Splats).

Figure 2 shows that the majority of computational toys (ten in total) that we reviewed
were categorized as ‘Screen-Based Robots’ because the majority of computational toys
targeting 5- and 6-year old children are robots that can be programmed by a secondary
external technological device (e.g. tablet). The category to represent the least number of
computational toys (two in total) was that of ‘Button-Operated Robot’ toys (e.g. Bee-Bot).

3.2 Ideational Features

Physical features are characteristics that can be observed visually. However, we need to go
beyond arbitrarily describing what we can observe by using merely our senses. After all,
doing so may lead us to generalize or make unnecessary assumptions. For instance, early
taxonomists primarily relied upon the physical traits of organisms to classify living things
into different categories, but anatomical features alone did not account for complex bio-
logical relationships or evolutionary processes that led to such characteristics. Therefore,
in addition to examining physical features, we explore beyond superficial learning features
and examine the internal knowledge, specifically ideational CT skills and competencies,
which children are developing as they interact with computational toys.

During the design process, idea generation, or ideation, occurs when designers work to
create solutions when tackling a problem (Norman 2002). Not only do educational tools
have physical features (as discussed above), but they also have design features, or idea-
tional features, intended to teach a particular idea or skillset. Therefore, as children inter-
act with features of CT toys, they are also generating possible solutions to computational

 M. Hamilton et al.

1 3

Table 2 Thirty toys classified by physical features

Name of toy Physical feature classification

Augie AR Coding Robot Screen-Based Robot
Bee-Bot Robot Button-Operated Robot
Botley the Coding Robot Robot with Tangible Interface
Blue-Bot Robot Blended
Code and Go Robot Mouse Button-Operated Robot
Code Monkey Island Board Games and Books
Coder Bunnyz Board Games and Books
Coji Robot Screen-Based Robot
Cubetto Robot with Tangible Interface
Dash Screen-Based Robot
Dot Screen-Based Robot
Finch Robot Screen-Based Robot
FurReal Maker: Proto Max Screen-Based Robot
Future Coders Bunny Trails Blended
Future Coders Robot Races Board Games and Books
Harry Potter Kano Coding Kit Non-Robotic Electronics
KIBO Robot with Tangible Interface
Let’s Go Code Activity Set Board Games and Books
Makeblock Codey Rocky Robot Screen-Based Robot
Makeblock mBot Robot Kit Screen-Based Robot
Mindware Code Hopper Board Games and Books
Osmo Coding Awbie Non-Robotic Electronics
Ozobot Bit Blended
Puzzlets Non-Robotic Electronics
Robot Turtles Board Games and Books
Root the Robot Screen-Based Robot
Siggy Scooter Screen-Based Robot
Thames and Kosmos Coding and Robotics Robot with Tangible Interface
Think and Learn Code-a-pillar Robot with Tangible Interface
Unruly Splats Non-Robotic Electronics

Fig. 2 Number of computational-themed toys assigned to physical feature classification

An Emerging Technology Report on Computational Toys in Early…

1 3

challenges affiliated with the toy’s design. In terms of computational toys, we refer to idea-
tional features as the design features intended to provoke CT skills (e.g. pattern recognition
and algorithmic thinking; Hamilton et al. 2018). CT skills are the skills that emerge as a
result of children’s interactions with both the physical and ideational features of CT toys.
Thus, we developed a framework for evaluating CT skills children use as they interact with
CT toys. Previous research has identified CT competencies (e.g. Ehsan and Cardella 2017;
Shute et al. 2017) as well as elements of CT (Angeli et al. 2016). We modified these facets
(Ehsan and Cardella 2017; Shute et al. 2017; Angeli et al. 2016) to create our skill-based
definitions. Our skill-based definitions focus on CT competencies that are measurable and
observable (see Table 3).

Children who engage in playful programming activities with computational toys utilize
CT skills as they participate in computational challenges. Children use algorithmic think-
ing (Selby and Woollard 2013; Angeli et al. 2016) as they create a sequence of instruc-
tions for Cubetto to follow. Additionally, as children program Cubetto to move from one
location to the next, they continue to break down a complex problem into smaller parts,
commonly referred to as a problem decomposition (NRC 2010; Angeli et al. 2016). Debug-
ging, another CT competency, is used frequently as both children fix errors within their
program (Selby and Woollard 2013; Angeli et al. 2016). The designed features of various
other computational toys also allow for children to use and develop their CT skills. In the
next section, we show how these CT competencies can be turned into measureable CT
skills to be utilized by practitioners in classroom settings.

In addition to evaluating toys based on their physical features, we evaluated toys based
on types of CT skills (Table 3) children use as they interact with CT toys. We have amended
our initial evaluation of CT toys and skills (Hamilton et al. 2018) to include additional CT
skills: parallelism, efficiency, automation, and iteration. In Fig. 3, we present the results of
our evaluation of the thirty toys identified in Table 2 based on their ideational CT skills.
We found that when children interacted with all thirty of the examined toys they used algo-
rithmic thinking skills. The CT toys also emphasize problem decomposition, scaffolded
debugging, and pattern recognition. The least of the skills to be emphasized include higher-
order thinking skills like parallelism, efficiency, and iteration.

Many of the toys we reviewed focus on lower order computational thinking skills
such as sequencing and debugging (Hamilton et al. 2018). The Bebras community, an
association of organizations involved with informatics and computing education, annu-
ally arranges an international problem-solving challenge which includes tasks related

Table 3 Summary of measurable ideational CT skills and their definitions

CT skill Definition

Algorithmic thinking Creating and following sequence of instructions to complete a task
Parallelism Carrying out tasks or steps at the same time to improve efficiency
Efficiency Designing a solution to have fewest number of steps
Automation Modifying or remixing portions of an existing program to solve similar problems
Scaffolded debugging Finding and fixing goal-deviant errors while developing a solution
Problem decomposition Breaking down a problem or task into smaller, more manageable parts
Abstraction Identifying main ideas and define reusable routines
Pattern recognition Identifying patterns or trends within data or information
Iteration Repeating design processes to refine solutions

 M. Hamilton et al.

1 3

to programming, algorithms, and computational thinking. Similar to our earlier find-
ings, Izu et al. (2017) analyzed Bebras challenges focused on computational tasks and
found that lower order computational thinking skills such as algorithmic thinking and
data representation were represented amongst different age groups (grades K-12) of
international students. Izu et al. (2017) recommend to the Bebras challenge creators to
expand on the other CT categories and keep a library of the tasks as they are classified.
Similarly, we encourage toy manufacturers to also expand upon higher-order computa-
tional thinking skills such as abstraction, as young children are quite capable of thinking
abstractly (Gibson 2012).

Technological tools and technology-supported activities are becoming more preva-
lent in early childhood programs. For this report, we evaluated many of the latest com-
putational toys, and yet, such technologies continue to emerge within the marketplace
quite rapidly. Because such technologies are “here to stay” (NAEYC 2012, p. 2), we
must make an effort to understand these complex learning interactions and any impacts
they have upon childhood development and learning. Not only should such technolo-
gies be aligned with learners’ developmental needs, but their use should complement
curricular goals while further developing foundational skills (Haugland 2000). In addi-
tion to curricular alignment, early childhood educators should be provided with neces-
sary resources, support, and training in order to realize effective technology integration
(NAEYC 2012).

Our emerging technology report adds to a growing body of research regarding com-
putational manipulatives and the affordances they provide for young learners (Sullivan
and Heffernan 2016). Further research is needed in developing and evaluating computa-
tional thinking skills in early childhood (Manches and Plowman 2017; Bers et al. 2014).
In future work, we plan to expand upon pedagogical research in early childhood and
further investigate how CT skills can be observed and measured in early childhood set-
tings. Some of our goals include to develop resources and provide pedagogical support
for integration of computational toys in early classroom settings. We aim to understand
how early computational seeds of learning manifest themselves and how educators can
continue to nurture these seeds as children grow and develop.

Funding This research was supported in part by an internal Research Catalyst Grant from the Research and
Graduate Studies Office at Utah State University and in part by the National Science Foundation (Award
#1842116).

Fig. 3 Distribution of CT skills of examined computational-themed toys

An Emerging Technology Report on Computational Toys in Early…

1 3

References

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., et al. (2016). A K-6 computational
thinking curriculum framework: Implications for teacher knowledge. Educational Technology &
Society, 19(3), 47–57.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what
is the role of the computer science education community? ACM Inroads, 2, 48–54. https ://doi.
org/10.1145/19298 87.19299 05.

Bers, M. U. (2010). The TangibleK robotics program: Applied computational thinking for young chil-
dren. Early Childhood Research & Practice (ECRP), 12(2), 1–20.

Bers, M. U. (2018). Coding and computational thinking in early childhood: The impact of Scratch Jr.
in Europe. European Journal of STEM Education, 3(3), 8. https ://doi.org/10.20897 /ejste me/3868.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering:
Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–157. https
://doi.org/10.1016/j.compe du.2013.10.020.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. In Proceedings of the 2012 annual meeting of the American educational
research association, Vancouver, Canada. Retrieved from http://web.media .mit.edu/»kbren nan/files
/Brenn an_Resni ck_AERA2 012_CT.pdf. Accessed 11 Feb 2019.

Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young chil-
dren’s cognition. Journal of Educational Psychology, 76(6), 1051–1058. https ://doi.
org/10.1037/0022-0663.76.6.1051.

Computer Science Teachers Association. (2016). Interim CSTA K–12 computer science standards.
Retrieved from CSTA website https ://cdn.ymaws .com/www.cstea chers .org/resou rce/resmg r/Docs/
Stand ards/2016S tanda rdsRe visio n/INTER IM_Stand ardsF INAL_07222 .pdf. Accessed February 11,
2019.

Computer Science Teachers Association. (2017). Revised CSTA K–12 computer science standards.
Retrieved from CSTA website https ://www.doe.k12.de.us/cms/lib/DE019 22744 /Centr icity /Domai
n/176/CSTA%20Com puter %20Sci ence%20Sta ndard s%20Rev ised%20201 7.pdf. Accessed February
11, 2019.

Computer Science Teachers Association (CSTA) Standards Task Force. (2011). In CSTA K-12 computer sci-
ence standards. Retrieved from CSTA website http://c.ymcdn .com/sites /www.cstea chers .org/resou rce/
resmg r/Docs/Stand ards/CSTA_K-12_CSS.pdf. Accessed February 11, 2019.

Computer Science Teacher Association (CSTA), & International Society for Technology in Education
(ISTE). (2011). Operational definition of computational thinking for K-12 education. Retrieved from
CSTA website http://www.iste.org/docs/ct-docum ents/compu tatio nal-think ing-opera tiona l-defin ition
-flyer .pdf. Accessed February 12, 2019.

Cubetto Universe – New Maps and Adventures. (n.d.). https ://www.kicks tarte r.com/proje cts/primo toys/
cubet to. Accessed February 12, 2019.

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM,
60(6), 33–39. https ://doi.org/10.1145/29984 38.

DiSessa, A. A. (2001). Changing minds: Computers, learning, and literacy. Cambridge, MA: MIT Press.
Ehsan, H., Beebe, C., & Cardella, M. E. (2017). Promoting computational thinking in children using apps.

Paper presented at 2017 ASEE annual conference and exposition, Columbus, Ohio. Retrieved from
https ://peer.asee.org/28772 . Accessed 11 Feb 2019.

Ehsan, H., & Cardella, M. E. (2017). Capturing the computational thinking of families with young children.
Paper presented at 2017 ASEE annual conference and exposition. Columbus, Ohio. Retrieved from
https ://peer.asee.org/captu ring-the-compu tatio nal-think ing-of-famil ies-with-young -child ren-in-out-of-
schoo l-envir onmen ts. Accessed 11 Feb 2019.

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M. (2013). Designing
Scratch Jr.: Support for early childhood learning through computer programming. In Proceedings of
the 12th international conference on interaction design and children. https ://doi.org/10.1145/24857
60.24857 85.

Gibson, J. P. (2012). Teaching graph algorithms to children of all ages. In Proceedings of the 17th ACM
annual conference on innovation and technology in computer science education (pp. 34–39). ACM.
https ://doi.org/10.1145/23252 96.23253 08.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educa-
tional Researcher, 42(1), 38–43.

Hamilton, M. M., Clarke-Midura, J., Shumway, J. F., & Lee, V. R. (2018). An Initial Examination of
Designed Features to Support Computational Thinking in Commercial Early Childhood Toys. In J.

https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.20897/ejsteme/3868
https://doi.org/10.1016/j.compedu.2013.10.020
https://doi.org/10.1016/j.compedu.2013.10.020
http://web.media.mit.edu/%c2%bbkbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://web.media.mit.edu/%c2%bbkbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
https://doi.org/10.1037/0022-0663.76.6.1051
https://doi.org/10.1037/0022-0663.76.6.1051
https://cdn.ymaws.com/www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf
https://cdn.ymaws.com/www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf
https://www.doe.k12.de.us/cms/lib/DE01922744/Centricity/Domain/176/CSTA%20Computer%20Science%20Standards%20Revised%202017.pdf
https://www.doe.k12.de.us/cms/lib/DE01922744/Centricity/Domain/176/CSTA%20Computer%20Science%20Standards%20Revised%202017.pdf
http://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/Docs/Standards/CSTA_K-12_CSS.pdf
http://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/Docs/Standards/CSTA_K-12_CSS.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://www.kickstarter.com/projects/primotoys/cubetto
https://www.kickstarter.com/projects/primotoys/cubetto
https://doi.org/10.1145/2998438
https://peer.asee.org/28772
https://peer.asee.org/capturing-the-computational-thinking-of-families-with-young-children-in-out-of-school-environments
https://peer.asee.org/capturing-the-computational-thinking-of-families-with-young-children-in-out-of-school-environments
https://doi.org/10.1145/2485760.2485785
https://doi.org/10.1145/2485760.2485785
https://doi.org/10.1145/2325296.2325308

 M. Hamilton et al.

1 3

Kay & R. Luckin (Eds.), Rethinking Learning in the Digital Age: Making the Learning Sciences Count,
13th International Conference of the Learning Sciences (ICLS) 2018 (Vol. 3, pp. 1739-1740). London:
ISLS.

Harel, I., & Papert, S. (1990). Software design as a learning environment. Interactive Learning Environ-
ments, 1, 1–32. https ://doi.org/10.1080/10494 82900 01010 2.

Haugland, S. W. (2000). What role should technology play in young children’s learning? Part 2. Early child-
hood classrooms in the 21st century: Using computers to maximize learning. Young Children, 55(1),
12–18.

Izu, C., Mirolo, C., Settle, A., Mannila, L., & Stupuriene, G. (2017). Exploring Bebras tasks content and
performance: A multinational study. Informatics in Education, 16(1), 39–59.

Manches, A., & Plowman, L. (2017). Computing education in children’s early years: A call for debate. Brit-
ish Journal of Educational Technology, 48(1), 191–201.

NAEYC. (2012). Position statement of the National Association for the Education of Young Children and
the Fred Rogers Center for Early Learning and Children’s Media at Saint Vincent College. https ://
www.naeyc .org/resou rces/topic s/techn ology -and-media . Accessed February 11, 2019.

National Research Council. (2010). Report of a workshop on the scope and nature of computational think-
ing. http://www.nap.edu/catal og.php?recor d_id=12840 . Accessed February 12, 2019.

NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The
National Academies Press. Retrieved from https ://www.nextg ensci ence.org/. Accessed February 12,
2019.

Norman, D. (2002). The design of everyday things. New York: Basic Books.
Papert, S. (1980). Mindstorms. Brighton: Harvester Press.
Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., et al. (2009). Scratch:

Programming for all. Communications of the ACM, 52(11), 60. https ://doi.org/10.1145/15927 61.15927
79.

Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. Retrieved from http://
eprin ts.soton .ac.uk/35648 1. Accessed 11 Feb 2019.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational
Research Review.. https ://doi.org/10.1016/j.edure v.2017.09.003.

Solomon, C. J., & Papert, S. (1976). A case study of a young child doing turtle graphics in LOGO. In
Proceedings of the June 7–10, 1976, national computer conference and exposition on—AFIPS’76 (p.
1049). New York, New York: ACM Press. https ://doi.org/10.1145/14997 99.14999 45.

State of Computer Science Education. (2018). https ://advoc acy.code.org/. Accessed February 12, 2019.
Sullivan, F. R., & Heffernan, J. (2016). Robotic construction kits as computational manipulatives for learn-

ing in the STEM disciplines. Journal of Research on Technology in Education, 48(2), 105–128.
Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. In Proceedings of the 16th

Koli Calling international conference on computing education research (Koli Calling’16) (pp. 120–
129). Koli, Finland: ACM Press, https ://doi.org/10.1145/29995 41.29995 42.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., et al. (2016). Defining computa-
tional thinking for mathematics and science classrooms. Journal of Science Education and Technol-
ogy, 25(1), 127–147. https ://doi.org/10.1007/s1095 6-015-9581-5.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49, 33–35.
Wing, J. (2008). Computational thinking and thinking about computing. Philosophical Transactions of The

Royal Society, 366, 3717–3725.
Yu, J., & Roque, R. (2018). A survey of computational kits for young children. In Proceedings of the 17th

ACM conference on interaction design and children (IDC’18) (pp. 289–299). Trondheim, Norway:
ACM Press. https ://doi.org/10.1145/32021 85.32027 38.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1080/1049482900010102
https://www.naeyc.org/resources/topics/technology-and-media
https://www.naeyc.org/resources/topics/technology-and-media
http://www.nap.edu/catalog.php%3frecord_id%3d12840
https://www.nextgenscience.org/
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
http://eprints.soton.ac.uk/356481
http://eprints.soton.ac.uk/356481
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1145/1499799.1499945
https://advocacy.code.org/
https://doi.org/10.1145/2999541.2999542
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/3202185.3202738

	An Emerging Technology Report on Computational Toys in Early Childhood
	Abstract
	1 Introduction
	2 Background
	2.1 CT in K-12 Education
	2.2 Defining CT
	2.3 Tools for Teaching CT

	3 Framework and Coding Scheme
	3.1 Physical Features
	3.2 Ideational Features

	References

