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ARTICLE INFO ABSTRACT

Keywords: Educational activities and programs associated with the Maker movement, which emphasizes creation of phy-
Electrodermal activity sical and digital artifacts as part of the learning experience, are presumed to be highly engaging for youth.
Wearables However, there has been limited research examining what features of Maker learning activities are associated
f/[‘;itiﬁ:; with youth engagement. We describe a research approach using wearable electrodermal activity sensors and

wearable cameras to obtain data from two afterschool programs at a community Makerspace for adolescent girls
(N = 12, 13). Using data obtained from these two sources along with daily survey data, we compare what is
revealed from these different data sources. We observe a moderate correlation between electrodermal activity
and engagement from survey responses. We also observe that activities emphasizing personal expression elicited
engagement from many youth. From the EDA data and first-person video, we also identify 23 moments when
groups of participants had several concurrent EDA responses suggesting high levels momentary engagement. Key
features associated with those moments were opportunities for peer socialization, interactive instructional dis-

Afterschool programs

course, and physical making activities when objects were being assembled and manipulated.

1. Introduction

Throughout the last decade, the “Maker Movement” has generated
enthusiasm from educators, funders, and researchers who have viewed
the associated practices of physical and digital artifact production as
offering a critical opportunity to both reshape and reimagine both
formal and informal learning experiences. Much of that enthusiasm is
due to very optimistic discourse around Making, which has asserted
that Maker-oriented learning activities are highly engaging for students
(Hsu, Baldwin, & Ching, 2017; Martin, 2015), and rich with high-in-
terest moments and situations that will lead to the subsequent devel-
opment of interests in STEM content and practices (e.g., Dougherty,
2013). However, we currently have modest empirical support of such
claims.

The underlying theory of how engagement is related to Making is
weakly specified. By their nature, some Maker activities “support youth
autonomy and control of their endeavors” and thus will “support en-
gagement and persistence” (Martin, 2015 p. 37). However, we do not
know with any specificity which Maker activities provide for this. To
illustrate, consider that Bevan (2017) has identified three different
forms of educative Maker activities (assembly, creative construction,

and tinkering) that have appeared in learning settings that place dif-
ferent demands on learners and facilitators. We may reasonably suspect
that each of those may promote different levels of engagement with
different populations and different circumstances. Moreover, we do not
know if it is strictly autonomy-promoting activities that promote en-
gagement. It could be that the canonical activities of Making — such as
using fabrication tools and creating a new artifact - are some of the
many possible contributors to engagement. Other factors could include
the change from standard educational formats of classroom based in-
struction, the opportunities to integrate more peer socializing and col-
laboration during a learning activity, or some other factors that have
yet to be identified.

Additionally, educational psychology has a long history of identi-
fying variables that influence how people will engage with learning
material and learning activities that can include topical and situational
interest, confidence in relevant prior knowledge, self-efficacy, and self-
regulation (e.g., Alexander, Jetton, & Kulikowich, 1995; Bernacki &
Walkington, 2018; Cordova, Sinatra, Jones, Taasoobshirazi, &
Lombardi, 2014; Linnenbrink-Garcia, Patall, & Messersmith, 2013;
Moos & Azevedo, 2008). These are not addressed in Maker education
literatures. As Maker education research matures, there is an
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opportunity to connect to other empirically-established bodies of re-
search and thus refine understandings about how engagement is es-
tablished and maintained.

Yet, this has not yet been pursued. Part of the reason why a look at
what moments elicit engagement has not been pursued can be attrib-
uted to the relative recency of systematic research on Maker education
experiences (e.g. Chu, Schlegel, Quek, Christy, & Chen, 2017). Much of
the necessary preceding research in Maker education has involved
proposing different models or identifying some of the learning gains
that are possible. We may only now be at a point in time when ques-
tions about moments of engagement are sensible to begin answering. In
addition, the lack of work on identifying moments that support en-
gagement are attributable to the inherent difficulty associated with
detecting and identifying triggered moments of youth engagement in
situ.

Recognizing this, Sinatra, Heddy, and Lombardi (2015) proposed as
part of a special issue on the topic on youth engagement in science
education that in order to make progress in studies of learner engage-
ment, researchers should consider engagement as existing on a con-
tinuum that ranges from person-oriented to person-in-context to con-
text-oriented. The specific positioning an analyst takes with respect to
engagement on that continuum invites different techniques for doc-
umentation and measurement, with in situ research demanding newer
techniques and approaches than the lab-based person-oriented ap-
proaches that are most prominent in educational psychology research.
As a demonstration of how one could do person-in-context work to
study engagement, Renninger and Bachrach (2015) argued that a move
beyond self-report measures and toward more observational methods to
identify what features of a learning environment trigger moments of
engagement would be especially profitable. The systematic analysis of
observational records, whether completed on notes or video footage,
could enable researchers to capture triggers in situ and complement
other established research techniques. However, they note that while
such work yields valuable findings, that approach is costly in terms of
time and effort.

The current paper proposes a new approach that uses an emerging
sub-genre of mobile devices (Lee, 2017) as tools to help document
“person-in-context” engagement in afterschool Maker learning activ-
ities. The sub-genre of mobile device that we use are wearables, and
specifically electrodermal activity sensors and point-of-view cameras.
The work is exploratory in nature in that this combination of technol-
ogies is a new endeavor for maker education research, and to some
extent, research on engagement. Below, we describe how research on
engagement has been addressed previously and how our use of elec-
trodermal activity data is intended to provide means for us to identify
what moments triggered increased youth engagement.

1.1. Engagement

As it appears in the educational research literature, engagement is a
term that has been popularly used but only loosely specified. It had at
one point been used primarily to refer to commitment to participation
as measured by school attendance and motivation to be involved in
academic activities but has since been better specified as a term that
can refer to any or all of the behavioral, cognitive, and/or affective
dimensions during a learning activity (Fredricks, Blumenfeld, & Paris,
2004). A common thread across these features has been an intuitive
sense of an individual’s “investment” in a particular activity. Behavioral
engagement tended to examine participation, whether that was mea-
sured by attendance or more immediate indicators such as body posi-
tion and furrowed brows; cognitive engagement referred to a psycho-
logical exertion of effort to understand ideas or complete a mental task;
and affective referred to having some more intense feelings toward an
experience. Summary discussions of engagement have noted contact
with motivation theories, but engagement has still been treated sepa-
rately; motivation has been referred to as referring to the underlying
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psychological processes that yields engagement (Ainley, 2012). One
may have strong self-efficacy beliefs that contribute to them being more
engaged in a problem solving task, but that engagement would not be
considered the motivational process itself.

The construct of “interest” has also been invoked as being related to
engagement, although it is not an essential component (Renninger &
Hidi, 2016). As a construct, interest refers to “both the psychological
state when engaging with some content and also the cognitive and af-
fective motivational predisposition to re-engage with that content over
time” (ibid., p 8). This definition of interest implies that interest has a
more positive valence, but that which is engaging can still attract at-
tention and behavioral changes, more cognitive effort, and negative
affect. For example, seeing a gory injury on an internet video may lead
to immediate engagement but may simultaneously elicit negative feel-
ings and thus not incline someone to voluntarily re-engage with that
video. That is, we may not expect that person to re-watch it or become
especially interested in gory accidents unless there was some positive
affective state that was associated with it as well. In the four-phase
model of interest development, brief moments of contextually-cued
engagement would overlap substantially with the first phase of interest
development, dubbed situational interest (Hidi & Renninger, 2006). For
instance, a child may see movie trailer about dinosaurs on the television
and that may lead to future and continued engagements with dinosaurs
as the interest develops. She may go see the movie, read books about
dinosaurs from the library, and lobby for her family to go to the di-
nosaur exhibit at a local museum. However, that same moment may
have also been encountered by another child who was situationally
interested in the movie trailer but may not go on to see the film nor be
attuned to getting dinosaur books at the library. The film trailer was
interesting at the time but did not develop into a longer term interest.
Still another child may have seen the movie trailer and been attentive
but also terrified. That last child may deliberately opt not to learn more
about dinosaurs even if given the opportunity. In all scenarios, we
would consider the movie trailer to have been momentarily engaging.
In that last scenario, we would consider that moment to have been
momentarily engaging but may not consider it to be a situational in-
terest.

What is common in our discussion of how motivation and interest
research has treated engagement is that behavioral, cognitive, and af-
fective dimensions can all be represented and the time scale of engaging
experiences is one of seconds to minutes. That represents a particular
level of granularity, and it represents a specific placement on the con-
tinuum of how engagement is conceptualized as is recommended by
Sinatra et al. (2015). An experience like an extended multiweek science
unit may support productive disciplinary engagement (Engle & Conant,
2002) and legitimately be called a form of engagement, but that is a
different grain size and overarching perspective than the one that we
are orienting towards here. That would be considered more re-
presentative of the context-oriented end of engagement. On the context-
oriented end, there tend to be sociocultural analyses of the learning
environment and observations of behavior, discourse interactions, and
social relations in situ (e.g., Ryu & Lombardi, 2015). Critical ethno-
graphic research on makerspace use has documented how long term
activities in makerspaces can be engaging with respect to what youths
value and what represents local concerns in their communities (Barton
& Tan, 2018). On the other end of the continuum is person-centered
perspectives on engagement, where research tends to look at an in-
dividual in a laboratory setting given a specific stimulus and measuring
engagement through techniques such as self-reports, response time, or
eye movements (e.g. Miller, 2015). The current paper is situated in
between those two extremes, or what Sinatra et al. (2015) refer to as
“person-in-context”. However, our methods exhibit deliberate orienta-
tion toward some multimodal person-oriented approaches such as facial
expressions and psychophysiological responses. We examined the psy-
chophysiological response that can be detected as changes in electro-
dermal activity in conjunction with facial expressions to further
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determine affective states of the person-in-context. Multimodal analysis
of converging data provides new and/or confirmatory insights that
single data streams cannot always provide (Grafsgaard et al., 2014;
Sawyer, Smith, Rowe, Azevedo, & Lester, 2017).

1.2. Electrodermal activity

Azevedo (2015) has noted that electrodermal activity (EDA) mea-
surements are an especially promising approach for looking at en-
gagement that takes place on short time scales. Similarly, advocacy for
metrics like EDA have appeared elsewhere especially as they could be a
data stream for automated and adaptive learning systems (D'Mello,
Dieterle, & Duckworth, 2017) and in multimodal learning analytics
(Azevedo, Taub, Mudrick, Farnsworth, & Martin, 2016). Until recently,
EDA research has been affiliated more with the subfield of psycho-
physiology where it had been also referred to as galvanic skin response
and been subject to laboratory studies, as precise conditions were
needed for instrumentation purposes (Dawson, Schell, & Filion, 2007).

What is currently known about EDA is that changes in EDA are
associated with heightened levels of arousal. The mechanism for this is
tied to the sympathetic nervous system, which in response to situations
that require or otherwise invite more attention, immediately activates
sweat glands near a person’s hands and feet to prepare the body for
action (Matsumoto, Walker, Walker, & Hughes, 1990). The influx of
conductive liquid from the sweat glands yields a measurable change in
conductivity even without any sweat reaching the skin’s surface, nor
needing for there to be enough sweat to produce a visible droplet. This
typically involves an immediate positive increase in conductivity in the
range of 1-3 microSiemens (mS) that then rapidly decays. The onset of
this reaction is between 0.5 and 5s after introduction of stimulus. Not
all individuals are equally conductive, and there are some known po-
pulations, such as individuals who have been diagnosed with schizo-
phrenia, who do not produce typical EDA readings or responses
(Gruzelier & Venables, 1972).

Cued state anxiety is one known cause of increases in EDA. For
instance, when undergraduate students were shown disturbing images
such as disfigured babies, bloody faces, or insects, they showed in-
creased EDA compared to when they were shown neutral imagery such
as landscapes (Naveteur & Baque, 1987). However, individuals who
were measured as having trait anxiety tended to show smaller increases
in EDA when shown the same disturbing stimuli. Anxiety and asso-
ciated increased EDA response has also been observed in tasks where
participants are asked to give a lengthy speech on an unfamiliar topic
that they are told will be recorded and evaluated for a grade (Carrillo
et al., 2001), a situation that is expected to provoke anxiety and stress.

High cognitive load also has been associated with increased EDA.
Tasks such as map reading, arithmetic problem solving, reading com-
prehension, and visual search and classification tasks have been used to
create increasing cognitive task demands and have shown higher levels
of EDA among research participants (Nourbakhsh, Wang, Chen, &
Calvo, 2012; Setz et al., 2010; Shi, Ruiz, Taib, Choi, & Chen, 2007).
That suggests EDA can be an indicator of cognitive engagement. With
more complex stimuli that have numerous activities appearing, EDA
has been used effectively to monitor increased engagement. For ex-
ample, audience response to performance arts videos have been mea-
sured with EDA (Latulipe, Carroll, & Lottridge, 2011). In classroom
based research, student EDA conductivity levels has been considered a
reasonable proxy for engagement (Daily, James, Roy, & Darnell, 2015;
Di Lascio, Gashi, & Santini, 2018). In these operationalizations of en-
gagement, there is a recognition that the sensors used detect arousal
and are thought to be a proxy for attention, cognitive effort, and some
sort of affective response although the precise valence is not known.
Given the above discussion of engagement, we deem EDA as at least
worthy of further exploration for detecting engagement.

Historically, and in several of the cited studies, EDA has been ob-
tained following a person-centered research in a laboratory setting with
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participants wearing electrodes wired to a computer. For our current
work, we have been using new wearable electrodermal activity (EDA)
wristbands that allow for data to be collected in settings beyond the
laboratory (Poh, Swenson, & Picard, 2010). Initial evaluation by Poh
et al. suggests concurrent validity with other accepted EDA in-
strumentation. The wearable device is advantageous for the current
study because it not only frees the participant from the laboratory, but
it also provides full use of one’s hands. Given our focus on afterschool
Makerspace experiences, where we expected youth to be freely moving
about and actively using their hands to complete their work, this was
desirable.

1.3. Wearable devices as a form of mobile technology

In recognition of the larger special issue theme that examines mo-
bile technology in education, it is important that we situate this study
with respect to mobile technology. Wearables have been considered to
be an emerging sub-genre of mobile devices (Lee, 2017). Recent in-
stantiations of wearables designed for learning settings have tended
thus far to emphasize their ubiquitous presence and hands-free usage.
Wearables have also been identified as providing particular forms of
support for learning, including supporting learners in personal expres-
sion, to integrate digital information into social interactions, to enable
educative role play, and for just-in-time notifications (Lee & Shapiro,
2019). More recently, they have been recognized as tools that can
capture records of bodily activity (ibid.). In education research, these
have been used for explicitly pedagogical purposes. The data obtained
from a wearable serves as an object to examine and discuss in a learning
activity (Kang et al., 2016; Lee, Drake, & Thayne, 2016; Lyons, 2015).
For our research purposes, they are not being used for pedagogy. Ra-
ther, the wearable platform is used to produce bodily records strictly for
the purpose of academic research and analyst inspection.

Some of the theoretical advantages of wearables have been touched
upon by Umphress and Sherin (2015) in their discussion of wearable
cameras as research tools (e.g., Sherin, Russ, Sherin, & Colestock,
2008). Specifically, wearable cameras afford perspective coherence with
the research participant. The researcher is able to obtain records that
can aid in the reconstruction of what participants had personally ex-
perienced given the perspective afforded by a wearable device. Still,
there are some inevitable limitations in that while the perspective co-
heres more with what a participant experienced, the perspective of the
wearable is still a forced perspective given where the device was placed
on the body and what it is instrumented to record. For instance, a wrist-
born wearable step tracker can do a respectable job of tracking steps
over the course of a day (Diaz et al., 2015), but the number that is
ultimately reported by the wearable device is an approximation for the
actual steps taken since the state of the art does not allow all steps that
were actually taken to be read (such as when a step is taken with little
to no arm movement), and some false positives will be registered based
on arm movements that approximate the motions made when taking a
step. However, contemporary wearables are still being seen as a way of
getting individual information that can be a reasonably effective proxy
of what had actually taken place and been experienced (Diaz et al.,
2015). The same perspective limitations would apply to a wearable
camera. While it is an approximation of what a person sees and hears, it
is not necessarily aligned the same way as someone’s eye gaze or ears.
Furthermore, even if something is in the line of sight of a participant, it
does not mean it was actually registered at the time. Thus, records from
a wearable camera might capture more or less than what was actually
‘seen’ or ‘heard’ by a participant. Thus, caution must be exercised when
making inferences from wearable camera footage.

1.3.1. Mobile learning theory and research wearables

The connection between wearable technologies and mobile learning
theory has minimally been made (Lee, 2017), but is one that we wish to
consider as part of this special issue. Mobile learning theory as an area
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for theory development has largely sought to elaborate on how poten-
tials of mobile technology — canonically, handheld devices - are rea-
lized and how affordances of learning that takes place on personal and
ubiquitous devices mediate new relationships between learners, edu-
cators, and content. Some of the main features of mobile learning that
have been identified include the portability and mobility of learning,
the ability to access content at any time that connectivity is accessible,
the potential responsiveness of learning to cues from the local context
and setting, means for communication to take place across devices and
between individuals, and the ability for learning to be personalized
(Crompton, 2013; Klopfer, 2017; Traxler, 2009). Wearables have not
historically been included in mobile learning theory, likely because of
their relative newness compared to more traditional portable com-
puting devices. However, in her discussion of the need for theory re-
lated to mobile learning, Crompton (2013) has stated “one should
consider [mobile learning] as the utilization of electronic devices that
are easily transported and used anytime and anywhere” (p. 48). This
makes wearables eligible for at least some speculative considerations as
they relate mobile learning theory. They function like other mobile
technologies in that they are easily transported and can be used any-
time and anywhere. They can collect information and make information
available for later learning and reflection. For instance, an activity
tracker can store the number of steps taken in a day but also provide
information on demand about how many steps were taken thus far or
remind the wearer to be more active if they have been inactive for a
period of time.

Yet while wearables can be eligible for consideration in mobile
learning theory, there are points where the wearables used in this study,
namely those that do not provide immediate user feedback or in-
formation, are an exception to current mobile learning theory. For in-
stance, Sharples, Taylor, and Vavoula (2007) have sought to articulate a
theory of mobile learning through an adaptation of the mediated rela-
tions commonly associated with the mediational triangle of cultural-
historical activity theory (subject-mediating artifact-object). Typical
mobile devices alter the relationship between a learner and a set of
ideas or practices to be learned through their ongoing presence and
ability to access and render information on demand. However, wear-
ables that are largely meant to be operating in the background and
outside of immediate awareness and that do not provide immediate
feedback are limited in how they mediate immediate interactions and
relations with the learning setting. That includes the wearables used in
this study, which are meant to generate information that are examined
post hoc. Thus, this more prominent example of mobile learning theory
is largely silent on the role that the wearables in this study play. Similar
limitations extend to other mobile learning theories such as those based
on conversation theory (Sharples, Arnedillo-Sdnchez, Milrad, &
Vavoula, 2009) or transactional distance theory (Park, 2011). Some of
this disconnect may reflect the positioning of some mobile technologies,
in this case, wearables, as research instruments rather than learning
instruments. Thus, it may be best to amend Crompton’s above-men-
tioned criteria for mobile technology and consider mobile learning
theory as applicable to electronic devices that are easily transported
and used anytime anywhere while providing the ability to immediately
capture and/or immediately return information to the user of the mo-
bile technology. Doing so would make clear that immediate availability
of information that is possible for some wearables is within the scope of
mobile learning theory, whereas wearable research technologies that
capture information that can only be examined much later speak to
different considerations and fall outside of scope.

1.4. Maker learning theory

Finally, as this article examines engagement in Maker learning en-
vironment, we now turn to a discussion of the learning theories un-
derlying Maker pedagogy. Proponents of Maker pedagogy often make
an appeal to Papert’s learning theory of constructionism, which stated
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that learning takes place especially felicitously in the process of con-
structing and sharing a public artifact of personal interest (Papert,
1980). Maker activities explicitly involve the creation of custom arti-
facts. In the Maker literature, the process of creating an artifact should
“foster deep and agentive learning, in part because of the way in which
it can generate reciprocal relationships among students and between
students and teachers” (Bevan, 2017, p. 81). That is, traditional in-
struction with a teacher or facilitator leading a lesson or discussion is
not supposed to be central to Maker pedagogy. Rather, peers, or even
students and ‘teachers’, teach one another at different times depending
on the task. Making is supposed to also place youth in contact with
newer “expressive technologies” (Blikstein, 2013) that will allow for
personal expression of interests and values, which should also promote
youth engagement, presumably by building on existing interests. We
would expect that customization activities that allow for personal em-
bellishments, decorations, and modifications would promote engage-
ment.

Also, participating in the Making community is supposed to support
the development of specific dispositions (Ryan, Clapp, Ross, & Tishman,
2016) that are consistent with the “Maker Mindset” (Dougherty, 2013).
The core values of the Maker mindset include being 1. playful 2. asset/
growth oriented 3. failure positive and 4. collaborative (Martin, 2015).
Those values are to be realized from the physical manipulation of
materials as they are iteratively combined with one another to produce
the culminating artifacts. Encountering mistakes and struggling with
putting things together such that they ‘work’ eventually is supposed to
engender a positive stance towards failure. Talking with peers and
getting their input and assistance is supposed to support collaboration.

What is learned should include the values of the Maker mindset as
well as science, mathematics, and engineering content and practices
(Bevan, 2017). This is the result of disciplinary engagement that comes
as a result of Making. Disciplinary engagements may come from acts of
measurement and calculation in selecting and preparing materials,
testing of material conductivity in a circuit while working with elec-
tronics, and iterative designing and building of artifacts as would be
characteristic of engineering. Making an artifact may involve or lead to
small scale experimentation and model construction. For instance,
youth may make data collection instrumentation (e.g., a weather sensor
to mount on a weather balloon) or may have to run iterative tests on
sensors that are part of their culminating artifact to ensure that they are
running correctly (e.g., a light sensor that provides input to determine
which direction a robot moves). Some research has documented
learning gains in these areas as a result of participating in Maker ac-
tivities (Chu et al., 2017; Peppler & Glosson, 2013). More remains to be
done to articulate the content learning and development of new prac-
tices from Making.

Finally, returning to psychological (rather than disciplinary) forms
of engagement, we took the position in the introduction that the exact
mechanisms for how engagement develops from Making have only been
weakly specified. We noted that agentive positioning was supposed to
be a key component, although how that was realized from types of
Maker activities was undetermined. We might extrapolate also that
repeated behavioral engagement in the form of revisiting Maker tasks is
to be expected from the complexity of the materials being used (Keune,
Peppler, & Wohlwend, in press). Cognitively, these tasks may be at a
level of challenge such that they lead to a state of flow with individuals
engrossed in the building of objects (Zollars, 2018). Synthesizing from
the above points related to Maker learning theory, we can infer that
characteristic Maker activities — collaborating, building objects with
new materials, personal expression, doing activities that do not have a
clear teacher leading a lesson - are supposed to lead to heightened
engagement from youth. While those make intuitive sense, they still are
subject to scrutiny as we do not know empirically if, for instance, a
teacher led instructional presentation is indeed less likely to produce
increased engagement for youth than an activity involving personal
expression, such as customizing and decorating one’s created artifact.
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1.5. Research questions

In considering what is known in Maker education and what remains
uncertain, we ask the following questions:

1. What activities in a Makerspace appear to elicit the largest number
of instances of momentary engagement, operationalized as changes
in electrodermal activity? As a specific instantiation of this question,
we could ask: does an activity like teacher-led instruction lead to
more or less momentary engagement than an activity like personal
expression through artifact customization?

2. Given that Maker activities are, on the whole, assumed to elicit
engagement, how consistent are the levels of engagement over time
and across individuals? As a specific instantiation, should we expect
fairly steady amounts of response across days in a Makerspace? And
should we expect youths by and large to be uniformly engaged by
specific activities?

3. How do analyses of momentary engagement, operationalized as
changes in electrodermal activity, compare to a daily survey in-
strument to measure engagement? To what extent can changes in
electrodermal activity be used as a proxy for engagement as self-
reported?

2. Methods
2.1. Participants and setting

Participants came from an existing afterschool program hosted at a
community Makerspace in the intermountain west region of the United
States. The Makerspace was equipped with a range of equipment in-
cluding 3D printers, programmable sewing machines, laser cutters, CNC
machines, microcontrollers, robotics kits, laptop computers, and its
own computer lab. Afterschool programs in the Makerspace were
scheduled as multi-week project “camps” in which youth convened
weekly for six-weeks. The camp organizers, as part of their own funding
obligations and the personal interests from the Makerspace leadership
team, had arranged for and designed camps exclusively for teen girls in
the region at the time of our research study. The Makerspace was
committed to making STEM accessible to youth through hands-on
Making experiences, with most programs taking place during the
summer and select camps being run during the academic school year.
Data collection took place during the 2016-2017 academic year.

The camps that we observed were created by the Makerspace to
include only young women. The target age group served by this ma-
kerspace was adolescents, which is common for community
Makerspaces targeted toward youth. We recruited all young women
participants who had already signed up to participate in two of the
camps. All young women agreed to participate and provided parental
consent and their own assent. The population was rural or from a small
city near a research university. In the first camp, which emphasized
Making around the topic of rocketry, there were 12 youth participants
(Mean age = 12.27 SD = 1.27). The racial composition of that group
was 10 White, 1 Latinx, and 1 Asian-American. In the second camp,
which took place after the first one had completed its full six-week
session, there were 13 youth participants (Mean age = 11.67
SD = 1.15). The racial composition of the second group was 11 white
and 2 Latinx. The topic of the second camp was oriented toward the
design and creation of custom laser-cut lanterns. Because these camps
took place at the same Makerspace, some youth participants (N = 7, 6
White, 1 Latinx) participated in both camps. The demographics were
consistent for the geographic area but lack some diversity that would be
found in Makerspaces located in more urban locales. Adult facilitators,
who were staff and volunteers at the Makerspace, also provided consent
to be documented in this research study through video recording.
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2.2. Materials

2.2.1. Engagement survey

We administered a survey instrument (Bathgate & Schunn, 2017)
developed by another research group (Science Learning Activation Lab,
2015) to measure youth self-reported affective, behavioral, and cogni-
tive engagement for each session. This instrument asked youth to rate
their agreement to 8 statements on a 4 point Likert scale with response
options being “YES!” “yes” “no” and “NO!”. Sample statements included
“During this activity, I felt excited” “...I felt bored” “...Time went by
quickly” “I was focused on the things we were learning most of the
time” and “...I was distracted”. Bathgate and Schunn (2017) report on
the reliability of this instrument (ranging from a = 0.71 to 0.80, de-
pending on which subscale) with similarly aged youth. The instrument
had three items measuring the affective dimension of engagement,
three items measuring the cognitive dimension, and two items mea-
suring the behavioral dimension.

This survey was administered 4 days for the first camp (Rocketry
emphasis) and for 5days for the second camp (Laser-cut lantern em-
phasis). These were administered electronically on tablet devices pro-
vided by the Makerspace. For the first camp, one day was not surveyed
because of internet connectivity problems (Week 3) and another in-
volved launching rockets at a field site (Week 5) and inadequate time
and infrastructure to distribute surveys. For the second camp, one day
was not surveyed because the youth went on a tour of a research and
design facility involved in aeronautics that is funded partially through
government contracts. Security protocols for the facility forbade any
recording equipment, so no data were collected that day.

2.2.2. Wearable devices

Each youth participant was provided with an Empatica E4 wrist-
band (Fig. 1) to wear on their non-dominant wrist. The E4 is equipped
to measure electrodermal activity through two electrodes that make
contact with the forearm just below the wrist, recording EDA signals at
4Hz (four times per second). As each session was approximately
90 min, that produced approximately 21,600 daily data points for each
participant. The E4 has no active display nor interface except for a
single button that must be pressed and held in order to ensure that a
data recording session had begun. To end data recording, the button
must be pressed down for several seconds. Data are transferred through
a data transfer cradle attached to a separate computer.

In addition, each youth was provided with a GoPro Session camera
(Fig. 1) that was worn on a chest mount configuration. The chest mount
was determined to be the most physically comfortable worn arrange-
ment for the camera (as opposed to a helmet or separate hat, see
Stevens et al., 2016). The cameras were configured to obtain con-
tinuous firsthand participant video footage, with the inherent limita-
tions described in Section 1.3 acknowledged.

2.2.3. Third-person video camera
For all but two sessions, a standing video camera operated by a
member of the research team was used to obtain third-person video

Fig. 1. The Empatica E4 device (left) that continuously tracks EDA and the
wearable GoPro Session camera that records video.
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Fig. 2. EDA data obtained from one youth on one day of the second Maker camp. Peaks identified by our algorithm are highlighted. Peaks that were eliminated as
potential data artifacts and their associated times are marked with the vertical line and darker shading in the timestamp boxes.

footage. One session during the first camp was missed due to a data
transfer error. However, video footage from that day was represented
from the set of all worn GoPro cameras from the participants. The other
session, from the second camp, was not videorecorded as it was the day
of the tour of the secured aeronautics facility.

2.3. Data collection procedures

Informed consent was obtained prior to the beginning of each camp.
Outside of scheduled time, a phone interview was arranged with par-
ental permission for a subset of randomly selected youth to administer
some follow-up interviews. These were audiorecorded and transcribed.

A research team member was stationed at the Makerspace with
assigned E4 devices and GoPro cameras. When each youth arrived, the
research team member verified they were comfortable participating in
the research study that day and helped them to put on the wearables
and get them turned on. That team member also operated the standing
video camera which primarily obtained a full group recording when
possible. When youth changed rooms or moved to other locations, the
research team member selected a subgroup to follow with the main
camera.

At the end of each session, youth were provided with a tablet device
that had the survey loaded for them to complete.

2.4. Data analysis

2.4.1. Survey analysis

The engagement survey data was scored following procedures de-
scribed in Bathgate and Schunn (2017), with some items reversed and
total scores computed for each individual. The maximum possible score
was 32 (high scores reflecting higher self-rating for engagement).
Average scores were also computed for each of the affective, beha-
vioral, and cognitive subscales.

2.4.2. EDA peak detection

In traditional lab-based EDA research, data collection occurred in
controlled laboratory conditions. Due to our person-in-context (Sinatra
et al., 2015) approach to capturing engagement and due to researcher
control of environmental conditions and stimuli being untenable, we
have developed a different approach to EDA data analysis. As has been
the tradition in lab-based studies, we focused on detecting peaks in EDA
that suggested a sudden response to stimuli. Our assumption is that a
peak corresponded to a change in stimulus in the preceding seconds
that led to heightened arousal. We started with peak detection code
made publicly available by the developers of the E4 (Taylor et al.,
2015). We then modified the code to identify a peak as being when the
relative change from one smoothed time interval (five seconds) to the
subsequent time interval (the second five seconds) was greater than one
positive standard deviation of each participant’s daily mean. This was
based on earlier work by Cain and Lee (2016) which suggested this
technique could identify high arousal moments. The data were skewed
positively (3.813). Because of the skew, this algorithm was assumed to
identify less than the top 16% of peaks (which would be the value for an
unskewed normal distribution). This reduced about 2.5 million data
points to 1575 peaks (about 2.5% of the possible peaks from the entire
corpus) (946 for the rocket camp, 629 for the lantern camp) that were
greater than a single standard deviation for each participant each day,
making it more conservative on what was considered noteworthy.

Once peaks were identified, potentially fallacious peaks were
eliminated through use of the EDA explorer artifact detection algorithm
developed by Taylor et al. (2015). In that algorithm, the developers
used machine learning techniques to train the algorithm to identify
potential noisy artifacts based on evaluations of sample data that were
reviewed by two EDA experts. Co-existing peaks that occurred during
time periods that the algorithm identified as potential noise or data
artifacts were removed from further analyses, further reducing the set
of peaks that were to be considered in our analysis (Fig. 2). That
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List of activity features identified from coding and iterative review of video data.

Feature

Description

Building on Existing Interest
Digital Making
Dynamic Materials

Interactive Instruction

Personal Expression

Peer Socializing

The activity is explicitly oriented to an existing topical interest that individual youth have outside of the camp. For example, this would include
times when a youth who likes soccer is asked to create images of soccer or talk about soccer

The activity emphasizes using digital tools to edit or modify some form of digital asset as would be common with media manipulation software.
For example, this would include rescaling images and modifying them in graphics software

Some material or equipment is used that produces some pronounced sensory stimuli, such as a flashing light, a loud noise, or a dramatic change in
color. For example, this would include a model rocket launched into the sky

The activity involves a facilitator, mentor, or tutor who is facilitating discourse around a topic of interest. The discourse should involve multiple
speaker participants and may involve movement or demonstrations. For example, this would include a discussion of Newton’s third law where a
rolling chair is pushed into a nonmoving chair and youth predict what will happen

The activity encourages some form of personal expression or aesthetic work, such as decorating an object or making something look an intended
way. For example, this would include painting rockets in preferred colors and patterns

This activity provides time for youth to talk with one another about any topics that they wish that may not be relevant to the immediate task at

hand, such as books they enjoy or things they noticed at school

Physical Making
New Content

The activity involves some form of assembly, creative construction, or tinkering (Bevan, 2017) with tangible objects
Some new disciplinary content, relative to what has been collectively discussed, is introduced and examined. For example, this would include a

large group discussion about chemical reactions and property changes associated with different materials as they oxidize

reduced the number of peaks to 1029 (622 for the rocket camp, 407 for
the lantern camp). An additional filter was implemented to remove days
and peaks when participants for reasons unknown produced EDA sig-
nals that never exceeded one microSiemen (mS) either in base values or
in peaks. That is, during our analysis, we identified one youth that al-
most consistently produced signals less than one mS, even when dif-
ferent devices were provided, suggesting she may simply be an in-
dividual with low overall skin conductivity. Two other participants
from each camp were also identified that also consistently had signal
values that did not exceed one mS. In addition to the participants that
consistently displayed low peaks, three other participants had select
days where their peaks did not exceed a one mS increase. Days on
which participants did not produce peaks meeting our threshold were
removed. This resulted in removal of data for 11 out of the 67 parti-
cipant days from the rocket group and nine of the 77 participant days
for the lantern group. It should be noted, that due to the conservative
nature of our classification of peaks and the filtering from noise and low
EDA signal values resulted in days in which some participants did not
have any peaks for analysis by our measures. This reduced the number
of peaks to 546 (324 for the rocket camp, 222 in the lantern camp). The
remaining peaks were those that were included for coding and analysis,
and are the peaks that were used for subsequent analysis and are re-
ferenced hereafter.

2.4.3. Video segment coding

2.4.3.1. Peak context coding. Time-stamps for all remaining peaks were
identified and corresponding segments of footage obtained from each
individual’s GoPro camera were examined. In order to provide context
to the activities associated with the peak, a 30-s window surrounding
the peak (20 s prior to the peak and 10 s after the peak) was examined.
When needed, other video were also used (e.g., the youth’s camera was
blocked by hair or an arm, or 3rd person or another participant’s
camera provided a better view of the situation).

Coding during this 30-s context window included codes developed
from the data regarding who the individual was interacting with (adult
mentor, peers, computer, a combination, or none), group level interaction
(large group, small group, one other individual, or self) and activity type
including (Observing Making, Actively Making, Peer Play, Peer
Socialization, Managing Materials, and Facilitated Instructional
Interaction). These codes were adapted from activity types identified
from initial review of data reported in Fischback and Lee (2017). For
data from the first camp, two coders independently reviewed 56 video
moments that were associated with EDA peaks and yielded k = 0.978.
For the second camp, two coders independently reviewed 45 video
moments that were associated with EDA peaks and yielded k = 0.915.
The two coders then proceeded to independently split coding respon-
sibilities for the remainder of all EDA peak data.

Each individual was also coded for their affective state based on
review of facial expressions on the video at the time that a peak was
detected. The scale used was a five point scale ranging from negative
affect (a score of 1) to somewhat negative affect, to neither positive nor
negative affect, to somewhat positive affect, to positive affect (a score of
5). Not all youth faces were visible even when running searches for
specific individuals from video files recorded from the standing camera
or other youths’ wearable cameras. In the cases where no face was
visible, no score was assigned. Two analysts independently coded 30
facial expressions and had agreement of k = 0.773. Disagreements were
resolved by discussion, and a single analyst then proceeded to code all
affective states for youth based on facial expression at peak times
identified during high EDA density peak clusters described in the next
section.

2.4.3.2. Ridgeline analysis. In addition to coding individual peaks, we
also identified time periods where there appeared to be a greater
density of peaks across the attending youth and at least 25% of the
youth exhibited peaks during that time period. This was done by
preparing ridgeline plots with all youth EDA peak density aligned by
time. The ridgeline plotting algorithm required at least three peaks
from the same person during that day to produce a value in the density
plot. Otherwise, that portion of the plot remained flat even though
there were peaks in the data. Then a visual inspection for high density
regions — where there was a youth’s high density cluster of EDA peaks,
represented by a ‘hump’ in the density data — aligned with other youth.
The associated time was checked against a list of all peaks from all
youth. A window of up to six minutes (roughly three minutes before
and after the identified time in the ridgeline plot) was established. This
time window was determined based on review of video data by two
analysts who then jointly prepared a summary of the episode. From
those, key features of the recorded activity were identified and assigned
to that episode. The features were identified from the coded activities
(Section 2.4.3.1) and from descriptive review of the video data. The
purpose of this analysis was to identify what activities in a given week
seemed to have the highest intensity of response (multiple EDA peaks)
across multiple youth. Resultant activity features are summarized in
Table 1.

3. Results
3.1. Engagement survey

Engagement survey descriptive statistics are provided in Table 2.
For the days when data were obtained, the tendency was for all re-

spondents to report each day was more engaging than not, with all
individual scores across all days being greater than 16, and the lowest
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Engagement survey descriptives. Camp 1 is labeled as “Rocket”. Camp 2 is labeled as “Lantern”.

Week No. Respondents Mean Engagement Score (SD) Mean Affective (SD) Mean Behavioral (SD) Mean Cognitive (SD)
Rocket 1 12 29.92 (3.90) 3.50 (0.63) 3.21 (0.66) 3.33 (0.59)
Rocket 2 27.22 (2.64) 3.78 (0.37) 3.06 (0.53) 3.26 (0.57)
Rocket 3 n/a n/a n/a n/a

Rocket 4 10 25.60 (3.13) 3.50 (0.45) 2.85 (0.53) 3.13 (0.50)
Rocket 5 0 n/a n/a n/a n/a
Rocket 6 11 27.82 (3.19) 3.73 (0.36) 3.18 (0.51) 3.42 (0.45)
Lantern 1 6 22.83 (3.92) 2.90 (0.50) 2.79 (0.76) 2.81 (0.60)
Lantern 2 0 n/a n/a n/a n/a
Lantern 3 10 26.00 (2.00) 3.47 (0.45) 3.10 (0.66) 3.13 (0.28)
Lantern 4 9 26.00 (4.24) 3.48 (0.65) 3.06 (0.53) 3.15 (0.69)
Lantern 5 11 24.36 (3.88) 3.42(0.54) 2.59 (0.58) 2.97 (0.71)
Lantern 6 10 27.50 (2.59) 3.87 (0.23) 3.05 (0.50) 3.27 (0.52)

mean score on any recorded day being 22.83 (out of 32) and the lowest
median being 24. Both of these were on the first day of the second
camp. Subscore ratings were all rated on average greater than 2.5,
suggesting the participants rated themselves as more engaged than not
each day.

There was no significant difference across engagement survey re-
sponses across days during the first camp [F(3, 38) = 0.83, p = 0.48].
This held true for the subscales as well [Affective F(3, 38) = 1.00,
p = 0.401, Behavioral F (3, 38) = 0.879, p = 0.460, and Cognitive F(3,
38) = 0.555, p = 0.648]. There was no significant difference across
engagement survey responses across days during the second camp at
the 0.05 level, although some may characterize it as trending [F(4,
42) = 2.54, p = 0.054]. We refer the reader to Wasserstein and Lazar
(2016) for guidance on how to interpret the results and p values, as the
alpha level of 0.05 can be inaccurately interpreted. When examining by
subscales, it appeared that Affective showed a difference across days
[Affective F(4, 41) = 3.725, p = 0.011, Behavioral F(4, 41) = 1.376,
p = 0.259, Cognitive F(4, 41) = 0.743, p = 0.568]. The difference ap-
peared to be from the first day of that camp that produced lower en-
gagement scores, particularly affective scores. That day was pre-
dominantly focused on group introductions and a tutorial on how to use
advanced graphics editing software.

3.1.1. Engagement survey responses and peaks per youth

We ran correlational analyses of the number of peaks per youth
(computed from the values in Table 3) and the engagement total and
subscales. This analysis was limited due to the small number of data
points. It only included the number of girls whose EDA data was re-
tained after our cleaning procedures (see Section 2.4.2). The correlation
between the total engagement score from the survey instrument and
peaks per person was r = 0.671 (p = 0.048). We found correlation
values of r = 0.330 (p = 0.386) for affective engagement and peaks per
person, r = 0.625 (p = 0.072) for behavioral engagement and peaks
per person, and a value of r = 0.645 (p = 0.061) for cognitive en-
gagement and peaks per person. Again, we refer the reader to
Wasserstein and Lazar (2016) for guidance on interpreting these cor-
relations. Our interpretation is that more peaks are correlated with
higher engagement. Closer examination suggests more peaks are sug-
gestive of higher cognitive engagement and behavioral engagement,
but not affective engagement. We conjecture that is because electro-
dermal activity is most suited for responding to cognitive and

behavioral dimensions because of its ties to psychophysiological
arousal, but does not adequately differentiate between positive and
negative affect, of which positive is most valued and measured by in-
struments such as the survey we used.

3.2. Distribution of peaks across camp days

Every participant except for those who were excluded for con-
sistently low overall EDA signal had generated peaks at some point in
their time at the Makerspace. In total, there were 324 peaks during the
first camp and 222 peaks from the second camp (Table 3) that were
included in our analysis.

Ridgeline plots were rendered of the data using the ggplot and
ggridge packages in R to show the density of each youth’s EDA peaks
across each camp (Figs. 3 and 4). These plots show what proportion of
that youth’s EDA peaks throughout their camp appeared at different
times. For example, if most of the participants EDA peaks took place
around a certain time during week 2 and a different time during week
4, then there would be two density ridgelines in that person’s row of the
plot. For this particular visualization package, three data points from
the same individual within a single day are required in order for a
ridgeline to be shown. The plots are faceted by week (columns) and by
participant (rows). The height of the ridgeline represents the proportion
of their peaks that were at a certain time point. If an individual had 10
peaks with most of them appearing in the first five minutes and a few
later on that same day, then a larger hump in the plot would appear in
the first five minutes and a smaller hump or plateau would appear later
on the plot. If an individual only had three peaks in close proximity to
one another, there would be a single large hump at the time when those
peaks had taken place.

The benefit of using ridgeline plot is to assist in identifying days and
times when larger proportions of EDA peaks took place for individual
youth. The ridgeline plot also shows profiles of individual participants
over multiple days to allow for visual appraisal of similarity. If youth
had similar responses, the overall contours of individual youth’s rid-
geline plots should be very similar to one another. They varied across
youth. Ridgeline plots also allow for times when there were high den-
sities of EDA peaks across multiple youths to be identified for sub-
sequent review and analysis. The corresponding peaks for those parti-
cipants was manually checked to see how many were the actual
absolute number of peaks that took place at a given time. These

Table 3
EDA peaks from individuals with readable EDA data. Camp 1 is “Rockets” and camp 2 is “Lanterns”.
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Total
# of Participants (Rockets) 5 8 12 9 10 9
# of Peaks (Rockets) 44 63 48 53 44 72 324
# of Participants (Lanterns) 11 n/a 11 11 10 11
# of Peaks. (Lanterns) 36 n/a 77 40 37 32 222
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Fig. 3. Ridgeline plots of youth EDA peak densities during the rocketry Maker camp (Camp 1).

numbers of peaks are reported in Tables 4 and 5.

For camp 1, there were proportionally fewer density concentrations
of EDA peaks during Week 1 (peer introductions and beginning to as-
semble rocket fins) and more during Weeks 2 (assembling rocket
bodies) and 6 (comparing different potential rocket fuels), based on
areas under the ridgelines. However, Weeks 3 (decorating rockets) and
4 (assembling rocket engine mounts and parachutes) had more parti-
cipants with raised ridgelines, suggesting those weeks had elicited more
frequent high density concentrations of EDA responses from more youth
than other weeks. More youth responded on days when they were
decorating rockets and assembling rocket engine mounts and para-
chutes. There was greater EDA response from select youth on days
when they were assembling rocket bodies and comparing rocket fuels.

For camp 2, there were proportionally less EDA peak concentrations
during Week 6 (installing light bulbs) and more during weeks 4 (laser
cutting lamp components) and 5 (assembling lamp components). Week
3 (selecting and editing custom images for lantern decoration) had the
most participants with raised ridgelines, suggesting that week had more
frequent EDA responses from more youth than other weeks. From this,
it would appear that weeks with customization and working with ex-
pressive technologies tend to yield EDA response across more youth
than other activities.

3.3. Features of high peak density moments

Looking across ridgeline plots helps to determine what weeks
yielded EDA responses across multiple youth. That is, we could de-
termine which weeks had EDA responses for the majority of the parti-
cipants. It can also help identify specific times during each week that
exhibited a larger concentration of peaks. That is, we could determine

what activities during those weeks contributed to a sizable proportion
of EDA responses. This is a different analysis in that the entire week
may have elicited a response from youth, but it could have been that the
activities during that week were so varied that only one youth was
showing signs of engagement in a given window of time according to
EDA response. For instance, personalization and customization could
have peaks scattered throughout the week as different youth made
customizations to their constructed artifacts at different moments.
Looking at high density moments that co-occur — precise times when
multiple youth were simultaneously exhibiting multiple EDA peaks —
would tell us more about what specific activity during the week was
potentially engaging to multiple youth simultaneously. We refer to
those times as high EDA peak density moments.

For the first camp, 13 high EDA peak density moments were iden-
tified. For the second camp, 9 high EDA peak density moments were
identified. These are summarized in Tables 4 and 5 with their date and
time of occurrence, as well as the number of peaks within those times
and the number of youth who produced EDA peaks. In order to gain a
further insight concerning participant affect during peaks, multimodal
analysis of peaks also included the results of affective coding from facial
expressions in Tables 4 and 5. On high EDA peak density moments that
had NA for standard deviation or for the mean, there was only one or no
faces visible at any camera angle respectively to make a judgment. Most
high EDA peak density moments had mean affective scores greater than
3.

The most frequently appearing feature across high EDA peak density
moments was peer socializing (13 instances). The next most common
were interactive instruction and physical Making (7 instances each).
Dynamic materials and digital Making each had 4 instances. The least
common features were new content (3 instances), personal expression
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Fig. 4. Ridgeline plots of youth EDA peak densities from the laser-cut lantern Maker camp (Camp 2).

(1 instance), and building on existing interest (1 instance).

This suggests that the activities that were structured to allow for
more peer socializing tended to show the highest levels of engagement.
Those were almost always during digital Making or physical Making.
While that may seem contradictory with respect to youth being engaged
as they were socializing when they were given time to work on Making,
our contention is that during those activities, youth were actually si-
multaneously engaged with their social conversations and interactions.
That is what they were engaging with while also doing some of their
Making work. It would be akin to a knitting circle gathering and talking
while knitting. The Making, we suspect, provided a context and space
for additional conversations to take place.

What is also surprising is that there were a relatively high number of
high EDA peak density moments when there was instruction taking
place. The instruction was interactive in that it was not a strict lecture
format, but it was clearly a time when an adult facilitator was leading a
group and the discussion, much as what we would see a skilled teacher
do in a classroom. This applied to whole group instruction (more
common in the rocket camp) and to instruction in small groups (more
common in the lantern camp) but involved an adult expert in the room
providing the instruction. This runs counter to the claim that it is the
flattened power structure for who does the work of teaching that is
especially engaging about Making. Perhaps instruction can be more
intensely engaging for multiple youth simultaneously, while less
structured and reciprocal instructional interactions — as can be realized
during peer socializing — are engaging for youth on a more ad hoc basis.
That is, to get a response from more youths at the same time, adult-led
instruction can be engaging for youth in a Makerspace. To get en-
gagement throughout a longer period of time, less structured time with
more opportunity for peer socializing appears to be engaging.

4. Discussion
4.1. Summary and theoretical implications

Our analyses yielded several observations based on the assumption
that EDA response has the potential to inform us about engagement.
First, there appears to be some correlation between EDA response and
overall engagement as measured by survey. More specifically, the cor-
relation appears to be between cognitive engagement and behavioral
engagement. Affective engagement does not seem to be meaningfully
correlated with EDA responses. We believe this is because electro-
physiological response is more suited to capture heightened arousal and
immediate attentional processes that would be associated with cogni-
tive and behavioral dimensions of engagement. EDA data alone would
not differentiate between positive and negative affect, as both valences
should yield an arousal response. Positive affect is what was measured
in the survey instrument, and thus had weaker correlations. More data
would need to be collected in the future to strengthen those claims.
However, considering that EDA has been effectively used as a measure
of cognitive load in the past and that negative affective response can be
detected with EDA, this claim seems plausible. Thus, we claim that EDA
is a resource for detecting engagement, particularly the cognitive and
behavioral dimensions, in situ.

This means that our exploratory approach for taking a person-in-
context approach for detecting moments of engagement has demon-
strated plausibility. Where we note some challenges with engagement
theory is that there is the inherent assumption in some instruments and
the general treatment of engagement that engagement must have po-
sitive affect associated with it. As we had discussed in the introduction,
and as suggested from some of our correlations, we may have moments
of engagement that do not have positive affect. Regardless, they may
have cognitive and behavioral engagement represented. We suggest
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Table 5

Lantern (Camp 2) high EDA peak density moments.

Key Features of Activity

Summary

No. of Youth with  Percent of day’s EDA Mean Observed Affective

No. of EDA

Peaks

Time

Date

Score (SD)

peaks

Peaks

Peer Socializing

Beginning of camp, youth are introducing themselves to one another

4.00 (0.76)

na

33.33%
11.69%

12

16:14-16:18

1/10/17
1/24/17

Building on existing

interest

Youth are searching for images to use for their laser-cut lantern faces

16:15-16:20 9

Interactive instruction
Digital Making

Youth work on editing selected images, youth with peaks are receiving one-on-one help from

a mentor or are adjacent to someone who is receiving help

3.00 (0.00)

10.39%

16:35-16:40 8

1/24/17

Interactive instruction
Digital Making

Youth work on editing selected images, youth with peaks are receiving one-on-one help from

a mentor or are adjacent to someone who is receiving help

na

12.99%

16:50-16:56

1/24/17

Interactive instruction
Digital Making

Youth work on editing selected images, youth with peaks are receiving one-on-one help from

a mentor or are adjacent to someone who is receiving help

2.80 (0.45)

20.00%

16:24-16:29 8

1/31/17

Interactive instruction
Digital Making

Youth work on editing selected images, youth with peaks are receiving one-on-one help from

a mentor or are adjacent to someone who is receiving help

3.33 (0.58)

12.50%

16:56-17:01 5

1/31/17

Physical Making
Peer Socializing

Youth are assembling lanterns, helping each other figure out pieces, and having

conversations about other activities

5.00 (0.00)

16.22%

16:34-16:40 6

2/7/17

Physical Making
Peer Socializing

Youth are assembling lanterns, helping each other figure out pieces, and having
conversations about other activities

4.00 (1.00)

18.92%

17:01-17:06 7

2/7/17

Physical Making
Peer Socializing

Youth are assembling lanterns, testing them, playing with them, and having conversations
about other activities

4.00 (0.82)

18.75%

16:42-16:48 6

2/14/17

12
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that in future discussions of engagement, the presumption that en-
gagement is associated with positive affect be made explicit. Some
promising research could still be done on moments that are engaging
but not associated with positive affect. Those may not lead to the de-
velopment of interest in the long term, but may lead to response and
attention from participants. We may want to document those in future
research on engagement.

Second, according to the data analyzed here, the days that more
youth were engaged were ones that involved decorating, personaliza-
tion, and assembly. This seems consistent with the notion that Making
is engaging because of opportunities for personal expression and
working with expressive technologies, as learning theory related to
making would suggest. However, what seems to be commonly engaging
for youth appears to be the opportunity to socialize with one another
while they are personalizing and assembling materials. It may be that
the combination of both interacting with peers and working on an as-
sembly or decorative task is what is engaging. We note that this is not
exclusively off-task conversation. Sometimes, the conversation was
about other activities or topics of interest, such as books that they have
read. Sometimes the talk was collaborative and supportive and related
to the task at hand, as was this sample exchange from the rockets camp
when one girl was getting help from another while assembling their
rocket.

Youth 1. Can you help me?

Youth 2. Sure.

Youth 1. It’s not perfect.

Youth 2. Here how about this. I'll hold this straight.

Youth 1. I need glue. Hey can I borrow that glue? If you’re done.
Thank you!

Youth 2. Okay, I'll hold it for you, and you glue. Alright, go fast. So it
doesn’t. Alright, there. Put it like here.

Youth 1. Oh hey, thanks for helping me.

Those transactions were part of the broad range of conversations
that took place during peer socializing and were where engagement
across peer socializing activities appeared in conjunction with digital
and physical Making activities. They were sporadic throughout a given
day, but represent moments of engagement that appeared in the data.
This suggests that there is an important social dimension to learning in
Maker experiences that should be made more prominent in any theory
explaining what makes Making engaging.

To get more youth to be engaged at the same time, expert-facilitated
instruction seems to be effective. One of the challenges that this ex-
ploratory study presents to the literature is the way in which a formal
instructor and centralized instruction can still be engaging in a
Makerspace. While the reciprocity of teaching and learning roles may
be characteristic of learning in a Makerspace (Sheridan et al., 2014),
there does seem to be some benefit in terms of triggering engagement
from limited expert-led instruction. This is a refinement to ideas about
limited instruction in Maker learning activities. Centrally-led instruc-
tion can cue simultaneous multi-participant engagement, and that may
be desirable depending on one’s aims.

However, considering also how Making is beginning to appear in
more formal learning settings (e.g., Chu et al., 2017), the results of this
analysis suggest caution for overly structuring classroom-based maker
experiences. For instance, one can imagine that a teacher might struc-
ture a Making-inspired lesson as a quiet activity to be done individually
at student desks where talking with peers is not permitted or highly
discouraged. They might take the assertion that centralized instruction
can cue engagement from this work as justification. However, based on
the results of the current analysis, overuse of that would appear to be
ill-advised. Socializing and working with one another while Making
seems to be part of what made Making engaging for the youth in this
study. Centralized instruction has its time and place in Maker learning
activities, but so do more open ended tasks where peer socialization is a
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key component. A balance should be struck in Maker learning activities.

As far as mobile learning theory is concerned, we have shown how a
mobile technology — namely, wearables that obtain EDA data and video
footage — can be useful for research purposes yet pose challenges for
mobile learning theory. Our suggestion had been to better circumscribe
what technologies are considered central for mobile learning theory, as
not all mobile technologies provide the same affordances for the
learner. In this case, the information that was available was available
post hoc and to third parties (researchers) rather than the learners
themselves. There are cases when wearables are useful learning tech-
nologies because the data they generate returns to them (Lee, 2013).
However, that was not the case here, where wearables served as a
platform for conducting academic research.

4.2. Limitations and challenges

As an exploratory study, we are aware of several limitations. First,
while thousands of data points were generated, the number of partici-
pants was relatively small. This is due to the enrollment in the Maker
programs that we had used as research sites. The research population
was all female, which also was a limitation that came with the research
sites. It may be that a mixed group of genders would yield different
responses, or that males would find different aspects of Making enga-
ging than what we documented here. Looking at and comparing with a
more diverse sample remains work for the future. Furthermore, tech-
nical difficulties and security restrictions limited how much data we
were able to obtain, especially from daily surveys. Thus, there are limits
to generalizability from this study.

Another limitation is that we were presumably capturing moments
of engagement whereas engagement could last for longer periods of
time than our instrumentation could capture. Examining peaks from
EDA data captured engagement as it was triggered, we believe, and
lasted for a few seconds. This technique does not capture sustained
engagement or sustained interest. It may be that youth were overall
more engaged than we present here because they were engrossed in
their tasks. They may not have exhibited a psychophysiological re-
sponse though. Other methods would need to be recruited to make that
determination.

One such method would be to get retrospective reports of self-
identified engagement from youth at shorter time intervals. This could
be done by administering the surveys more often than once per weekly
meeting, or it could be done with a self-rating of engagement. In fact,
we attempted the latter approach, but concluded that our participating
youth were not well equipped to provide retrospective self-reports
about what was more or less engaging in a given day. When we tried to
get retrospective accounts of engagement from youth to validate what
we were getting from wearable devices, we found that youth accounts
of what happened and when it happened was either too vague (e.g., “I
was into most of it. It was fine.”) or incongruent with what we had
recorded in video data. Longstanding psychological research on retro-
spective self-ratings suggests that we can be easily swayed by some
recalled events and specific features of experiences that may not reflect
their summative qualities (Kahneman, Fredrickson, Schreiber, &
Redelmeier, 1993). Given that and the data quality, we did not pursue
further analysis on the participants’ qualitative retrospective accounts
of what was or was not engaging at different times.

An alternative approach could have been to utilize experience
sampling techniques in which youth were asked at random intervals to
report what they are doing and their levels of engagement. Experience
sampling shows good potential (Xie, Heddy, & Greene, 2019), although
it may require more time with youth than the duration of time we had
available to generate sufficient data. Furthermore, in close confines and
with this age group, we were concerned that youth would be distracted
by each other responding to prompts to provide samples at different
times.

What is also a concern, based on the engagement survey responses,
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is that self-appraisals may be inflated without more deliberate effort to
help youth recalibrate and classify their levels of engagement. Youth in
this study were already willing to be part of a Maker camp experience
outside of school time, which may bias them to be on the higher end of
many existing instrument scales. Their engagement scores on the en-
gagement survey were relatively high, with few youths responding low
engagement. This could have been because the activities were more
engaging than not, but it could also be due to the self-selected popu-
lation that was studied. Still, more research comparing trade-offs with
different sampling techniques is needed whether it is with comparable
or different populations.

A challenge with the approach described here is that this metho-
dological approach has also been time consuming to analyze.
Thousands of data points were generated and hundreds of hours of
video footage were produced. Analytically, this required careful storage
systems and cross referencing video footage from several angles and
perspectives. As computational techniques and more standards are es-
tablished, this may become an easier task for future analysts. However,
a substantial amount of time making sense of human activities and
interactions was required to come up with the classifications that we
did. Distributing and relying on more likert scale surveys would have its
own challenges, but analyses of that kind of data would likely have
more established procedures that could expedite the process compared
to what we had done.

4.3. EDA wearables as a research tool

Circling back to the special issue theme of mobile technologies, we
believe we have some practical lessons to shed on wearables as a class
of mobile technology. First, we have used wearables as a research in-
strument rather than as a tool for pedagogy, which expands on Lee &
Shapiro’s theory of wearables as providing forms of learner support
(2019). Lee & Shapiro argued that an emerging form of learner support
was the ability to obtain bodily records but the assumption was that the
learner would be subsequently examining those records. The usefulness
of bodily records from wearables goes beyond providing feedback and
supporting the learning of the wearer and instead serves as part of a
platform for doing research. Specifically, EDA wearables have some
initial promise. They may not capture all that researchers value as being
engaging, but they can provide some pointers for future inquiry. If the
correlations that we saw are indeed valid and hold up to future re-
search, then we have uncovered a way of getting data about youth
engagement in a learning activity without requiring surveys or inter-
ruptions. However, we do wish to reiterate that EDA wearables do not
work effectively on all individuals. Some youth produced data that did
not produce enough of a signal for us to analyze. Others should re-
cognize that they offer some unique features, such as their ability to
obtain large amounts of data, but they also presume particular in-
dicators of some phenomenon (i.e., EDA peaks are markers of engage-
ment) that may not be universally accepted. For instance, Di Lascio
et al. (2018) used overall skin conductivity as a measure of engagement
rather than peaks in EDA data. That is a different way of computing
engagement from EDA signals than what we had done here.

For EDA data to be actionable beyond stating a magnitude of en-
gagement, richer accounts of context are still valuable and necessary.
We tried to obtain those richer accounts with wearable cameras. At the
same time, those richer accounts were costly to analyze. There were
also occasions when the cameras, as mounted, did not provide useful
footage because something (e.g., an arm, a table edge) was blocking the
view of the camera lens. Moreover, the video segmenting system of the
wearable cameras, which automatically created clips segmented in
12 min intervals, created additional work for us to stitch data back
together. We had begun this study assuming that aligning video to EDA
data would be a straightforward task, but it turned out to be a time-
intensive one because of how file formats were created and stored on
different wearable devices.
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Also, EDA wearables still seem limited in detecting affective states.
Our correlational analyses suggest affect is not detected in a significant
way. As engagement is a multidimensional construct that has an af-
fective component, this is a concern for future work. We have tried to
work around this by using a survey instrument that had some affective
components and by examining facial expression data to infer affective
state. However, these were compensatory actions for a shortcoming in
relying heavily on EDA to measure engagement. Perhaps the most
promising direction is to use multimodal technologies that can take
EDA as one data stream with others that can detect affect (D'Mello
et al., 2017).

5. Conclusions

Regarding engagement in making, we have thus begun to make
some headway in understanding if and how Maker learning activities
support engagement. To revisit the research questions, the activities
that seemed to elicit the most momentary engagement from youth in a
makerspace were those that involved peer socializing, physical making,
and interactive instruction. The opportunity to participate in activities
related to personal expression was also engaging, but there were few
high EDA peak density moments, suggesting the engagement for any
given individual during personal expression activities is more sporadic.
For Maker pedagogy, we see more importance of expert-led instruction
than has been highlighted in the literature and the importance of peer
socializing as part of what makes Making activities engaging.

Across weeks, there were some days that had more EDA response
across youth, such as occasions of personal expression through dec-
orating rockets and assembling engine mounts and parachutes for the
rocket camp and personal expression through selecting and editing
images to place on their custom lanterns for the lantern camp. From
this, we can infer that more youth will have a response on days when
they can pursue personal expression but not at the same time as each
other.

Finally, we had some correlational results that suggest the number
of EDA peaks per person correlates moderately with self-reported
survey scores of engagement. More specifically, we have some sug-
gestions of moderate correlations between peaks per person and cog-
nitive and behavioral engagement. Affective engagement does not seem
to be meaningfully correlated with EDA peaks. Methodologically, it
suggests that counting EDA peaks has some potential for detecting some
features of learning activities and environments that are momentarily
engaging. Future work will be necessary to bolster or refute these early
findings.
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