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On researching activity tracking
to support learning:

a retrospective
Victor R. Lee

Utah State University, Logan, Utah, USA

Abstract
Purpose – This paper aims to discuss research and design of learning activities involving activity tracking
andwearable activity tracking technology.
Design/methodology/approach – Three studies are summarized as part of a program of research that
sought to design new learning activities for classroom settings. The first used data from a qualitative
interview study of adult athletes who self-track. The second used video excerpts from a designed learning
activity with a group of fifth grade elementary students. The third study draws largely on quantitative
assessment data from an activity tracking unit enactment in a rural sixth grade class.
Findings – Activity tracking appears to provide opportunities for establishing benchmarks and calibration
opportunities related to intensity of physical activities. Those features of activity tracking can be leveraged to
develop learning activities where elementary students discover features of data and how data are affected by
different distributions. Students can show significant improvement related to statistical reasoning in
classroom instructional units that centralize the use of self-tracked data.
Originality/value – As activity tracking is becoming a more ubiquitous practice with increased
pervasiveness and familiarity with mobile and wearable technologies, this paper demonstrates a topical
intersection between the information and learning sciences, illustrates how self-tracking can be recruited for
instructional settings, and it discusses concerns that have emerged in the past several years as the technology
related to activity tracking begins to be used for educational purposes.

Keywords Quantified self, Activity tracking, Elementary statistics, Personal informatics,
Self-tracking, Wearables

Paper type Research paper

Introduction
It has become more common to see individuals of certain means sporting wearable devices
that assist in their personal tracking of their physical activity. Often, these devices take the
form of wristbands or smartwatches that track, at a minimum, the number of steps taken
throughout the day and the calories expended. More expensive models will include features
such as heart rate monitoring, sleep detection, amount of time spent sitting versus standing,
number of floors equivalent climbed, minutes spent exercising, specific workouts completed
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and locations traversed by way of GPS technology. The primary market for these
technologies has been adults with disposable income who were seeking to pursue active
lifestyles andmaintain a level of ongoing fitness and health in pursuit of wellness.

Several years ago, just prior to activity tracking wearables becoming commonplace, my
research group had begun a program of educational inquiry and design that examined the
potential of these technologies to be sources of data that youth could collect and examine to
support learning with and about data (Lee and Dumont, 2010). The underlying assumption
had been that youth would be more knowledgeable about the data because they had
produced it and had direct firsthand understanding (Hug and McNeill, 2008) of the activities
that were represented by the data. Our first target population to help us examine those
assumptions had been high school-age youth who used chest-worn heart rate monitors (built
by Garmin) that communicated with wristwatches to log beats per minute based on
electrical conductivity. At the time, the data transfer process was more onerous than what is
required today, with today’s technology typically involving a Bluetooth data transfer to a
smartphone that happens regularly in the background of other activities. Back when that
work began, obtaining records of electrical impulses from one’s torso to infer heart rate was
already cutting edge for a commercial wearable technology. To enable pilot students to
examine the data, a specialized synching cradle that connected to a desktop or laptop
computer had to be used. The computer that received the data needed specialized
proprietary software for the data to be stored and viewed in any meaningful form. Now,
those data are stored in the cloud. The data are viewed in custom apps with encouraging
messages and prompts to be more active and earn badges for meeting goals that are
configured into each device. Everyday conversation around activity tracking has shifted
from “what is that thing around your wrist?” to “have you met your step goal today?” and
“do you like that model better than the rival activity tracking technology?”.

Regardless, my research team had different considerations in mind when beginning
work with activity tracking technologies. Rather than focus on whether people were meeting
fitness goals and whether the technology was effective at promoting wellness, we were
curious about the questions that youth would pose if given access to such technology and
how data about one’s own activity could facilitate ways of thinking that were valued in
mathematics and science. Indeed, we found through our earliest forays that students who
were obtaining data from chest-worn heart-rate wearables began to interrogate the data
based on what they already knew about themselves and physical activity. At the time, these
technologies were used predominantly by athletes and fitness enthusiasts as personal
training tools. In our original case study that represented our first published work on the
topic (Lee and DuMont, 2010), we documented how a pair of teen girls who were asked to
determine what activity was making them work harder, according to heart rate data,
showed evidence of new learning about how to examine data. The pair that we studied had
collected data from some common outdoor play activities (i.e. throwing a Frisbee and
playing the basketball game “HORSE”) and started their investigation by focusing on
maximum values obtained in a single minute. Whoever had the highest single value was
seen as having done harder work. However, they shifted to looking at where there were
greater density of data points. Basically, they transitioned to considering more aggregate
properties of the distribution of data points instead of making judgments based on a specific
data point. What enabled this shift was personal views of who was more or less athletic and
how simply looking at maximum values conflicted with their views of themselves. Also,
their recall of the specific activities contributed, with students talking about whether they
remembered had to domore or less moving during each recorded activity or not.
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Since that original study, the devices and the broader discourses around the technology
continued on their advance sensing the body, altering our views of self and health, and
hacking wellness which is commonplace today (Lupton, 2014; Nafus, 2016). The primary
market became all adults who felt they could afford to buy a device rather than athletes
seeking to optimize their training and performance. The devices were furthermore biased
toward specific audiences who were assumed to have the latest and greatest devices in a
broader technology ecosystem. Still, as activity tracking devices became more familiar and
cheaper to purchase, the devices became easier for the normatively able-bodied to wear and
use. Our team adapted and migrated to new commercial devices for our research. The work
extended to classrooms, with a focus on fifth and sixth grade students, as those grades were
subject to educational standards expected proficiency in understanding how sets of data
were organized and represented. Furthermore, those students were expected to be able to
characterize sets of data by measures of center and spread. Those became research
emphasis areas for several years, and in some ways continue to this day among members of
my team (Drake, 2018; Thayne, 2016).

This article serves as an early retrospective, coupled with the presentation of some new
data, on the use of commercial activity tracking technologies to support the design and
implementation of new statistical learning activities for youth. As this is part of the launch
of a new journal, this topic appeared to be an appropriate one as it spans concerns in both
the information and learning sciences. Current research in information sciences takes
seriously that the new forms of technology and information capture and storage around us
are raising new questions for how to manage and act upon that information. Wearable
technology represents one way in which information about physical activities is becoming a
part of that landscape. Similarly, research in the learning sciences examines new
technologies and arrangements for learning whether it takes place in formal settings (i.e.
schools) or informal ones (i.e. homes, afterschool programs, museums, hobby groups, etc.).
Wearable technologies have increasingly been an interest area in the learning sciences and
have included, but also gone beyond activity tracking technologies (Lee and Shapiro, 2019).
It seems apt for the inaugural issue of this journal to describe one line of work that has had
some intersections with both areas.

In the sections that follow, I provide a brief summary of some relevant research that has
been done in both information and learning sciences that serves to demonstrate that
studying and designing for tracked activity data is one area of mutual interest. Following
that, I provide summaries of three studies. One involves an examination of adult endurance
athletes and how they collected and used their activity data. The information from that
study informed a small design research study which sought to incorporate some of those
findings into an activity we have called “quantified recess”. That second design-based
research study illustrates how the examination of one’s own activity data can be a
meaningful pursuit for elementary school students and can support increased
understanding of outlier sensitivity in different measures of center. The third and final
study is one from a classroom level design experiment that has not yet been reported. In that
study, a full classroom unit was designed and implemented where each student in the class
was provided with their own activity tracker to use during the school day. Through data
obtained before and after that unit, I show how students in that class showed significant
improvement in multiple areas on a validated learning progressions assessment instrument.
Following that, I discuss what opportunities reside ahead for the use of tracked activity data
for learning and what risks are associated. I also broaden the discussion to other related
topics that we could explore through publication in this journal and through the continued
dialogue between the information and learning sciences.
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Activity tracking in information and learning sciences
Within information sciences, a modest but growing community has emerged that concerns
itself with activity tracking and has often gone under the umbrella of “personal informatics”
systems (Li et al., 2010). Personal informatics can include a number of information types that
can be collected relevant to a given individual that extends beyond physical activity. For
instance, research and development projects in personal informatics that do not emphasize
physical activity include those that help users examine their own productivity data and time
spent on social networking sites by way of a workstation monitoring app (Collins et al., 2014;
Whittaker et al., 2016). As personal informatics has grown as an interest area in the
information sciences, and particularly in the field of human-computer interaction,
frameworks and models for personal informatics have undergone further examination and
refinement (Epstein et al., 2015; Li et al., 2011). Those modifications sought to explain better
when and how individuals participate in technology-supported self-tracking. Other names
used to describe this increased availability of self-tracked data include the Quantified Self,
Personal Analytics, and Lifelogging (Lupton, 2014; Nafus, 2016; Lee, 2018). A tendency in
these lines of research and development is to promote behavior change, with an underlying
assumption that knowing more about our behaviors can empower users to then modify
them. However, it is still unclear that behavior change is the dominant goal or that people
who express an initial interest in self-tracking will maintain that commitment for an
extended period of time (Clawson et al., 2015).

Some projects in this area have examined archival data to see how participants in
Quantified Self “meet-up” groups collect and share data (Choe et al., 2014; Lee, 2014). Others
have involved the design of technologies to provide new forms of feedback, such as a
growing plant, in response to one’s level of physical activity (Consolvo et al., 2008) or design
of new ways of representing activity such as showing a runner’s current pace through LEDs
on her shirt (Mauriello et al., 2014). Interview and autoethnographic studies in human-
computer interaction have also examined what influences and drives individuals to use
various tracking technologies (Patel and O’Kane, 2015; Tholander and Nylander, 2015; Yang
et al., 2015). Together, these help to provide a more nuanced image of what compels people
to use different tracking technologies andwhat new feedback systems are in development.

In the field of learning sciences, where design and study of new sociotechnical
arrangements for learning are central concerns, there has been growing interest in
mobilizing data about the self in service of learning. My own work has been situated as
forms of quantified self in education (Lee, 2013a) and personal analytics for youth (Lee,
2018). However, I am not the only learning scientist who has examined self-tracking data
experiences in educational settings. In museum settings, Lyons (2015) has used data that
patrons produce as a strategy to promote understanding of increased challenges posed by
climate change. In afterschool programs, Ching et al. (2016) have designed gaming activities
to promote increased awareness of physically active lifestyles and also uncovered important
constraints that youth face in making their own mobility decisions. Recently, Sommer and
Polman (2018) described a learning sciences design project where a teacher worked with
students in an alternative school setting to use Quantified Self data to develop infographics
as a project to motivate student inspection and expression with data. Finally, in what would
appear to be an overlap between information and learning sciences, Kang et al. (2016) have
designed clothing for early elementary school aged children that embeds heart rate sensors
and enables dynamic personalized data visualization and improved learning of human
anatomy. In that project, youth learned more about anatomy and the impact of exercise on
heart rate visualizations. Interest in quantified self in learning sciences even led to a keynote
exploring overlaps between the two at the 2018 International Conference of the Learning
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Sciences and considerations the field should make as work in these areas moves forward
(Tabak, 2018).

Taken together, there have been signs of mutual interest in both information and
learning sciences. The core of activity-tracking research in both information and learning
sciences is that some process or system is used to collect moderate to large amounts of data
(on the scale of dozens to thousands of data points) generated by an individual through their
behaviors. That individual then inspects those data in some manner so that they can
generate new understandings. This allows for self-tracked data to enable a form of reflection
that builds upon personal informatics systems (Baumer, 2015). Where exist some differences
across information and learning sciences is in some of the methods and populations used.
For instance, learning sciences tends to emphasize research on learners in designed learning
settings. Information sciences goes into sociotechnical systems that are organized around a
given form of work. Granted, high quality exceptions exist in both fields. However, there are
ways in which those two directions of inquiry can be mutually informing. The next two
studies are intended to illustrate one way that one line of work can greatly inform the other.

Study 1. Understanding the data practices and data relationships among endurance athletes
One strategy for understanding how people work with information, and in this line of work,
self-tracked information, is to go out and understand what people do “in the wild”. A
qualitative study that I completed with my former doctoral student, Joel Drake, sought to do
that. We interviewed 20 endurance athletes (runners and cyclists) recruited through running
and cycling groups who self-identified as self-trackers. These interviewees spent time with
interviewers showing the devices and records that they had created, explained why they
collected those data, and how those data were useful or frustrating for them. In addition,
they answered questions about the structure of bicycles (Lee, 2013b) and analyzed sample
data obtained from tracking devices that did not belong to them. Details about these
interviews, including the questions that were asked along with the coding processes, sample
data excerpts, and some specific cases, is summarized in Lee and Drake (2013a).

One common observation was that several interviewees created their own logging
systems. An example of such a logging system, not previously published but part of the
original data corpus, appears in Figure 1. That particular log recorded number of minutes
spent on each logged day doing designated exercise activities that ranged from shoveling
snow, swimming, running, stretching, and hiking. That individual kept track of the number
of hours each week she had exercised and had specific goals set. Her primary motivation
was to avoid the difficulties that she had seen family members have as a result of histories of
obesity. That participants’ goal was to set goals and ensure accountability for them.

However, what we also discovered was that logged data took on many different roles for
those who tracked. For some, logging served to provide benchmarks on previous
performance. Knowing how one had performed on a particular exercise or what pace they
maintained on the same distance of run in a previous year allowed for comparison and a
form of competition with prior self. If previously obtained data were examined after new
data were collected, then it was typically seen as feedback on how that athlete was doing
relative to what they knew they could do. However, if previously obtained data were
examined before collecting and examining new data, it served as a target to beat. The
athletes wanted to improve over their past selves and had that in mind during their
exercise or competition. This form of competition was seen as more considerate of where
each athlete was in their performance and progress rather than positioning them in relation
to elite athletes. (Elite benchmarks, such as what would qualify for the BostonMarathon, for
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instance, were still considered as those were valuable in their athletic communities even if
they had no intention of participating in the BostonMarathon.)

Also, when and how data were presented raised different concerns. In Lee and Drake
(2013a), a concern voiced by some was that having immediate data feedback pulled their
attention from their immediate activity. That led them to “hide” the devices that were
reporting their data (such as sticking it in their bags or turning them the other way so their
screens were not visible) so they could look at the information after but not be absorbed by it
during their exercise, event, or training. One very experienced participant, a woman who
used a power meter along with a bike computer as part of her aggressive cycling training
and had trained others, reflected this sentiment in the following statement:

Participant: So, I compete in road biking and cyclocross, but my love is probably mountain
biking. But I don’t compete in mountain biking because I don’t want to ruin it. I wanna keep it fun
too [. . .]. I don’t mountain bike with watts [tracked power] because I like it to be fun. I’m not out
training. Not that I don’t go hard [while mountain biking]!

For this participant, data (in the form of watts) detracted from the fun of mountain biking.
That was the activity she loved and to compete and track data would “ruin it”. It was not
simply some mountain bike rides were ones that she did not want to track. Rather, that was
her opportunity to still be a cyclist but have that completely separated from any sense of
training that came with self-tracking.

This is consistent with other studies and writings on self-tracking. For instance,
Buongiorno (2017) observed that the quantification of activities and explicit focus on just
those quantities ran the risk of creating a detachment from the lived experience that
produced those numbers. To avoid tracking would be to commit more fully to attending to
the lived experience. Also, there was often an audience and judgment placed on what the
numbers showed, according to an ethnographic study by Dudhwala (2017). In that study,
when given a visualization of self-tracked data, there was an observed compulsion among
some trackers to work harder so that they could make their data “look” better should others
see the logged information. Excluding something from tracking prevents that judgment
from being possible.

Another finding from this study was how different quantities took on situated meanings.
For cyclists, a desirable cadence was above 80 rounds per minute. Using a cycling computer

Figure 1.
A data log created
andmaintained by an
adult endurance
athlete that contains
records of her
exercise activities
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and sensors allowed cyclists to develop their intuitions for how 80 rpms felt in bodily effort.
As they became increasingly familiar, several cyclists in that study reported not needing the
cycling computer to tell them what was 80 rpms as they could judge that on their own.
However, they did still use their cycling computers to track their rides and obtain overall
statistics. Another example, which appeared in Lee and Drake (2013a), involved one
individual who found that heart rate monitoring changed her outlook on her performance.
As she described it, she had an expectation of being able to run at a certain level on inclined
terrain but found she was unable to meet that expectation. As a result, she developed a
critical view of her own abilities and considered herself to just be a “wimp” on inclines.
However, when she had obtained a heart rate monitor and used it on inclined terrain, she
discovered that her heart rate was over 200 beats per minute, meaning it was at her aerobic
maximum. Her inability to keep her desired pace on inclines was not simply a personal
failing. Rather, it was because her body was performing at its maximum level. To quote her,
“[. . .] all of a sudden, it was ‘I’m not a wimp. I’m pretty tough’ if I can get it [my heart rate] to
that high”. The ability to quantify her performance and see those quantifications against
some known benchmarks changed her view of herself and her performance in ways that
were healthier andmore productive for her eventual improvement.

Overall, findings from this study of activity tracking among adult athletes informed the
design of an activity we developed with elementary school students. Among the key
observations was to focus on relative change for individuals as performance targets for self-
tracked activity so as to avoid a sense of competing against an unattainable elite
benchmark. Another was to keep self-tracking narrow in scope so that a long term fixation
on how their data looked or how important those numbers were could be diminished. We
also came to appreciate how quantification could support a better sense of calibration for
what numbers would be associated with different activities and how that tied into individual
limits. The subsequently designed activity and how elementary school students responded
to it are described in the next section.

Study 2. The quantified recess project
Drawing on lessons learned from the study of adult athletes who self-tracked with
technology and also from the observation that seeing central tendencies and distributions
were a potential for youth using activity monitor data, we developed an activity that we
have called “quantified recess”. This was a small scale effort on the escalating program of
design-based research we were pursuing. This activity is described in more detail in Lee and
Drake (2013b), along with a case study of how a fifth grade student and her assigned partner
discovered outlier effects on different measures of center (means vs medians). That other
paper describes how screen andwebcam recordings were used for data collection to examine
what youth were discussing in their data, what manipulations they had tried to change their
data over time, what technology was used to convert data so that it was usable for students,
and how that initial case was developed and analyzed to develop a narrative account.
Briefly, the quantified recess activity was designed to encourage students to seek
modifications in their physical activity during recess over the course of a single week. The
technology used was a waist-worn Fitbit device (the Fitbit One waist-worn device) that
recorded the number of steps taken each minute, which we provided back to students in a
student-friendly data visualization software tool. Students were paired together with one
student’s performance being determined by the change in their mean steps per minute over
the course of a week. The other student in the partnership was measured by the change in
their median steps per minute over the course of the week. In total, 12 students (six teams)
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participated in this activity over two weeks (6 students during one week, then the other 6
during the next week).

The students who participated in the study revealed a number of intuitions that they
tested about their recess movement that they could test and evaluate. Consistent with other
research on personal intuitions about the operation of activity trackers, they did not always
reflect on how the tracking devices actually worked (Yang et al., 2015). For example, shuffle
steps were thought of as a possible way to increase the number of steps taken, but then there
was disagreement among students about whether those movements should count as a step.
They were not registered by the wearable activity tracking devices as steps, which settled
that matter for the students. Another question from students was if giving piggy-back rides
to friends during recess could increase steps as one had to work much harder with the added
weight of a friend to carry. They tried that as a way to increase their activity, but saw that
did not increase the number of steps per minute in a way that was consequential for the
metrics they were collecting. In the case study we presented in Lee and Drake (2013b), we
provided a detailed account of a pair of students who were discussing how to accommodate
for one student whose level of physical fitness did not allow her to be actively moving as fast
as she could continuously for the entire recess. The score she was producing was based on
the median number of steps per minute she took during recess. Like the adult athlete who
used heart rate monitoring in the adult study described above, this student was finding that
she was reaching her limit. She could not maintain a recess with nonstop continuous, high-
intensity activity, while her assigned partner could. When the two students disagreed on
what would be the best strategy to increase her score, she observed that breaks could be
okay because those would be outlier values in her recess data. They would not influence the
median level of activity if she stayed otherwise consistently during the times she was
actively moving. That became their strategy to change their measured activity levels so that
they were exceeding what they had done before. Their plan was to provide breaks for the
one student who was struggling to increase her median score, knowing that it would not
affect the newmedian she was trying to establish. Her partner, on the other hand, was going
to stay as active as possible for as long as possible as his recess data were being represented
by a mean andwould be adversely affected by a break.

This became information that the entire group of students, beyond the focal pair,
explored as the compared their strategies to manipulate their recess data over the week. The
original case study pair shared what they had discovered on the last day when all students
were examining their recess data together, and a different student’s data visualization was
used to explore possible manipulations to see if, as the case study pair had professed, that
having outlier values because of taking breaks would be acceptable when considering
median values. New for this paper is a brief account of what happened where that previous
case study left off (not included in the original Quantified Recess paper due to space
restrictions).

Beyond the pair of students in the previously published case, other students in the larger
group who participated in quantified recess appeared to have gained an understanding of
outlier sensitivity. This is illustrated with the brief transcript excerpt below, involving three
students who were not in the originally profiled pair. The students, referred to with
pseudonyms, were Callie, Anya, and Michael. Just prior to the moments indicated in the
transcript excerpts below, several data points in Callie’s data were changed (see Figure 2) by
reducing their values to show a hypothetical a “break” in recess activity. This was done to
verify that what had been shared before about outlier sensitivity. The activity facilitator
asked why Callie’s score did not change in response to those changes. Although they did not
use formal statistical language, Anya explained her intuitions for why the median value did
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Figure 2.
Callie’s recess data in

steps taken per
minute and the

median value (left)
followed by a

manipulation where
some values were

artificially lowered
and the median

remains the same
(right)
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not change. Michael then restated the implications of it for how it would impact her recess
score in the quantified recess activity.

Facilitator: Why isn’t this [the change in values] changing Callie’s score [median]?

Anya: When we moved those [data points], the ones close to the bottom, it [the median] didn’t
change – there was a lot, a lot more on the right side, up high.

Michael: Look, if she has 10 [minutes of] breaks and she’s going hard for maybe 15 [minutes], it
[the 15 minutes of hard activity] brings it [the score] up a lot. But it brings it up. If we had it at
zero a lot, but if you go hard for like 14 and rest for like 11, it [the median] still would be higher.

In this exchange, Anya had referenced changing several data points that were below the
median (red) line in the plot (Figure 2) and reiterating that the median value did not change.
The reason for this was that there were more on the right-hand side of the plot that had high
values relative to the lowered ones. The median served as a divider that split points across
high and low values; it did not get affected from lower values being made even lower. When
Michael spoke, he made a rough estimate of 10 break minutes being shown in Figure 2 by
the drop of the data points. Those were akin to moving very little or not moving at all (“if we
had it at zero a lot”). Students across settings referred to those as being time when a student
was not actively moving about or taking “breaks”. On the other hand, “going hard”, whether
it was for 15 or 14 min (as he offered both as suggestions), still meant there would be more
data points on the higher side of the median line. While Michael may not have describe the
median as splitting the data ordinally in half, he did recognize that even with changing some
values to “breaks”, the act of “going hard” would compensate for it. The difference in how
Anya and Michael described changes in Callie’s data was largely in how Anya focused on
positions and values for data points, whereas Michael had translated those data points into
recess action. Both represent ways of understanding medians and outlier sensitivity that go
beyond what has been documented in other research with students across grade levels and
adults (Jacobbe, 2008; Watson andMoritz, 2000). That Michael connected it to recess activity
also suggested that thinking about this in terms of recess activity, rather than as data
points, allowed that activity to serve as a meaningful context for this statistical reasoning.

While we did not perform systematic pre- and post-test measures of this group, we were
seeing that students who were taking versions of this approach of using their own activity
tracking for learning about and reflecting upon statistics content were showing greater
learning gains about measures of center than those who were following the traditional
curriculum over the same amount of time (Lee and Thomas, 2011). We also were discovering
that recess had some especially useful properties within school for data inspection. Namely,
it had much more active movement than most of the school day, students were doing a wide
range of activities that were influenced by a multitude of social factors, it was a time when
students had expertise on the physical activities that exceeded those of their classroom
teachers, and it allowed for public recollection and testimony of what happened so that
individual students’ accounts of what took place on a given recess could be verified and
challenged as necessary (Lee et al., 2016). Also, students could calibrate their sense of recess
activities with the number of steps per minute after relatively brief exposure to an activity
tracking device. With this in mind, our team proceeded to develop multiweek curriculum to
use in schools that could address all state standards and build on students intuitions about
school day physical activity. As is to be expected in educational design-based research,
multiple iterations followed. The team designed a classroom unit, implemented it with some
teachers and students, refined it over the remainder of that year, and repeated that process
the following year. This was then repeated one additional time during a still later school
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year. That final school year, after three years of classroom iterations outside of pilot work
and small group activity trials like “quantified recess”, is the source of data for the final
study described below.

Study 3. Implementation of a designed activity tracking unit with full classrooms
The last study I report on is work that has not appeared elsewhere, with the exception of
some classroom conversations that had been analyzed and published in Lee (2017). We were
interested in seeing what conceptual progress in elementary statistics content could be made
by an intact class of students using a unit with quantified self data. This final study
involved a sixth grade class of students at a rural school that had Title I status. No students
or staff at the school had prior experience working with our team on this project. The
teacher who led the class was in her third year of classroom teaching and had previously
taught early childhood education before getting her teaching credential. As the school had
been organized, the students were given a grade-level assessment at the beginning of the
year to determine their mathematics performance. This particular teacher, whom we refer to
as “Ms Hayley”, was given the lower performing half of students in the 6th grade for her
math class. The higher performing students did math with the other sixth grade math
teacher in the school. At this particular school, which served grades K-8, four classes of
students existed for grades fifth and sixth. Each teacher for that grade level had a mix of
fifth and sixth grade students throughout the school day. Math was one subject area where
students were separated by grade level. Otherwise, activities were done across both grade
levels. By the time we began working with this school, standards had been changed to move
some of the content we had previously done with fifth grade students to sixth grade.

We were not provided formal data on students’ prior mathematics performance, but we
were told by Ms Hayley and the school that Ms Hayley’s class of students included several
who struggled with multi-digit subtraction and some of their core number sense skills.
Indeed, we observed some of these difficulties when observing them during scheduled class
time. Using rulers and calculators was also unfamiliar to most students in the class, making
some traditional measurement and computational activities seemingly difficult to run
without substantial support. There were also a number of students who had some additional
special education needs that led to a full-time aide spending math period with Ms Hayley’s
class. Like most rural schools, the students were predominantly white. We did not survey
for family information, although the surrounding area was heavily reliant on the
agricultural industry. On occasion, students would mention their families’ involvement in
the industry by mentioning specific farms or companies where their parents worked. There
were 29 students enrolled in Ms Hayley’s math class, although due to regular circumstances,
one or more students was absent from school on any given day.

Procedures
All students in Ms Hayley’s class and their parent or guardian provided signed consent to
participate in the research study, which was done as part of scheduled school activities. Ms
Hayley’s class was provided with a mathematics and statistics unit that was designed
iteratively by our research team and with assistance from past partner teachers. The unit
was intended to last four weeks for one period of class each day of the week. With pre-
planned field trips, assemblies, and scheduled release days, the unit lasted a little over five
weeks into the school year. It was the first math unit done at the school following initial
assessment and sorting of the students into the separate math classes. Ms Hayley also added
two additional lessons of her own design that asked students to identify what were
statistical questions and could be answered through quantitative research.
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Every student in the class was provided with their own Fitbit Flex wristband device that
would obtain step data throughout the school day. These devices were linked to anonymous
accounts that we had used for other research studies in the interest of student anonymity to
cloud-based servers. Each day of the unit, data that were automatically transferred to Fitbit
servers was retrieved and provided in one minute intervals in TinkerPlots data visualization
software (Konold and Miller, 2005). At the beginning of math class, which took place in the
morning, the teacher identified one or two students whose activity data would be examined
together by the class. Those students’ data were projected, and the student associated with
the data would narrate what activities they thought were represented in their projected data.
Others in the class would offer their impressions and comment on sections where they
thought something different than what the student had described was being projected. For
example, students would sometimes dispute what was the recess activity that was
represented and contend that the presenting student must have mixed up morning and
afternoon recess activities in their narration and say why the data suggested as much. As
noted in the discussion above, recess became a focal time for students as they had the most
to say about those time periods. Not surprisingly, much of the school day involved step
values of zero steps per minute as they were usually seated at their desks. We had
anticipated this based on our quantified recess work and from prior classroom enactments.
By the second week of the unit, students would only examine recess data when reviewing
their own data.

As they examined the recess data, they identified ways to describe typicality and
difference in the data that they had produced. This led to students developing, based on
prompts from the teacher, procedures for identifying modes (with the teacher asking where
the data seemed to clump together) and medians (with the teacher asking where seemed to
be the “middle” point of the data). A fair share model for determining the mean was
introduced by Ms Hayley after it began to get mentioned by students as an approach to
determine what was “average” for the data. Different ways of describing how the data
differed were introduced by students and those that matched normative techniques and
terms in the standards were highlighted by Ms Hayley. By the third week of the unit,
students were then tasked with manipulating their recess activities for one day to produce
higher or lower measures of center or create the greatest amount of variation in their data.
These were then examined on subsequent days along with some canonical representations
of distribution, such as box and whisker plots. In addition, students worked on inventing
histograms as a way to organize and represent data. That process involved students
creating posters to show both typicality and difference in data, comparing their creations,
and then taking the most useful ideas that appeared in class and working on a refined data
plot. From there, the teacher helped the class to see how that was like a histogram, and the
histogram plot was used regularly.

In the final week, based on various comments and questions that students had generated
from ongoing review of their recess data, they worked in small groups to pursue a data
investigation of their own choosing that involved comparison across two groups.
Comparison of similar data sets had been previously identified in the statistics education
literature as one effective means for supporting students’ developing of inferential skills
(Watson andMoritz, 1998). An example comparison we have documented in some detail at a
different school in a previous year was completed by a group of students who sought to
compare student step counts when playing (American) football and soccer (Lee et al., 2015).
In the present school, some students pursued comparisons of specific activities, some for
specific days of the week, and some looked at comparisons across gender. On the last day of
the unit, students made brief presentations of their data and what they felt they could
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conclude from their comparisons. All unit days were video-recorded with two video cameras
following recommendations for camera placement and data management described in Derry
et al. (2010). Those video recordings served as qualitative data for discourse and interaction
analyses of students and teacher participation (Lee, 2018, 2019).

Assessment
For the purposes of evaluating implementation in Ms Hayley’s class, students were given
written pre- and post-tests using an assessment instrument developed by Lehrer et al. (2014).
This assessment had been developed explicitly to inform how students were performing
along a statistical thinking learning progression. In learning sciences research, learning
progressions represent potential trajectories for student development of practices and
content understanding in a specific disciplinary area (Duncan and Hmelo-Silver, 2009).
Through an iterative instrument validation process, Lehrer et al. (2014) identified constructs
that were being measured through their written instrument. One construct was
“Conceptions of Statistics” (CoS), and it pertained to students abilities to describe
distributions and measures of center (such as means, medians, and modes) in data, both
through computational procedures and through qualitative estimation. Questions
addressing this would ask for specific measures of center but also would ask what would
happen to a measure of center if a data point were removed. Another construct was
“Informal Inference” (InI), and addressed students’ abilities to look at a samples of varied
data and make inferences about population differences. For example, this could take the
form of comparing two plots showing the number of bowling pins knocked down across
several frames for two bowlers and inferring from that who seemed to be better at knocking
down pins. “Modeling Variability” (MoV) was another construct that measured students
abilities to account for differences in variability in distributions based on how measurement
was done. An example of this would be to predict the differences in distributional shape if a
less and more precise measurement instrument were used to obtain data. These constructs
were assessed as part of a test that had seven scorable problem sets with subcomponent
questions. The problem sets had combinations of multiple choice questions and open
response questions.

Scoring
Lehrer et al. (2014) had developed assessment rubrics for each item in the written tests that
were provided to us. These rubrics identified specific assessed constructs (i.e. Conceptions of
Statistics,Modeling Variability, Informal Inference), a stated performance for each identified
level, and examples of student responses that matched each performance level. These
addressed both multiple choice questions and open response questions. It is important to
note that each rubric item included between three-eight performance levels (inclusive of half
levels when a performance was characterized as in transition but distinct enough to merit its
own row in the rubric). This resulted in a complex scoring system designed to accommodate
many degrees of nuance in student responses. Categorical placement of a student response
to a single level was a challenging endeavor. The original instrument had been used with
multiple sites and grade levels, making such nuance important in the original rubrics for
showing how progressions on each construct varied and tied into each other. For our
purposes, the instrument was for unit assessment, so we did not expect the entire range of
the instrument to be represented from a single class. Still, we did observe that student
responses could fit between identified levels in ways that had not been documented. A
summary of the constructs and low, intermediate, and high performances as applicable to
this group of students is shown in Table I.
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One coder scored the open responses on the pre- and post-tests using a training set
from a previous year to calibrate their judgments consistent with what was provided in
the rubrics and to be consistent with how students in another school had been scored
(Lee et al., 2016). As mentioned above, there were several known numerical threshold
levels for each item. In addition, there were also known sub-threshold levels within the
provided rubrics that reflected a transitional performance. For instance, a Conceptions
of Statistics (CoS) item may have had originally intended numerical threshold
performance levels of CoS2 and CoS3 identified. For a specific item, subthresholds such
as CoS2a through CoS2d (where a and d denote the subthreshold) had also been
identified in the rubrics. For numerical scoring, the threshold and subthresholds were
converted into a decimal scale with the whole number value taken from the threshold
level (in the example of CoS2a, the threshold level number would be 2) and the decimal
portion mapping each subthreshold letter onto a 0.2 increment (so CoS2a would convert
to 2.2 and CoS2d would convert to 2.8). The 0.2 increment was important as well
because there were still some known transitional values between subthresholds,
denoted by a “-”. This would be considered a 0.1 deduction on the unmodified score (so
that CoS3c- would convert to 3.5).

Reliability
To check reliability, five students’ pre- and post-tests were randomly selected for
scoring by a different analyst to determine reliability. Based on exact matches at the
subthreshold and transitional performance level, the two scorers achieved 87.4 per cent
agreement with each scorer blind to the other’s coding. Allowing for deviation of one
known threshold level (i.e, one point), the scores had 89.6 per cent agreement. Due to the
complexity of the scoring rubrics and the sparse and inherently ambiguous nature of
handwritten student responses, we deemed this an appropriate level of scorer
reliability. These percentages reflect only agreement for the open response questions
and would be higher still if multiple choice responses (which are immediately agreed
upon) were included, but we excluded those as their inclusion could artificially inflate
reliability.

Table I.
Highest, intermediate
and lowest
performance levels
on constructs of
interest for our
statistics unit

Construct Lower performance Intermediate performance Highest performance

Conceptions of
Statistics (CoS)

CoS1(a): Use visual
qualities of the data to
summarize the
distribution

CoS2(a): Calculate the
statistic for central
tendency

CoS3(d): Predict how a
statistic is affected by
changes in its components
or otherwise demonstrate
knowledge of relations
among components

Modeling
Variability
(MoV)

MoV1(a): Attribute
variability to specific
sources or causes

MoV2(a): Informally
estimate the magnitude of
variation due to one or
more causes

MoV2(b): Describe how a
process or change in the
process affects variability

Informal
Inference (InI)

InI1(a): Make a judgement
or prediction according to
personal experience or
beliefs

InI3(b): Compare two
distributions based on one
value such as the
maximum, mean, or the
number of cases above a
cut-point

InI5(a): Compare two
distributions based on
proportions within
defined regions, such as
above/below a cut-point
or IQR
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Results
Twenty-six students (N = 26) in Ms Hayley’s class completed both pre- and post-
assessments. For evaluation purposes, we only included students who were present on days
when the assessments were scheduled to be administered – the day before the unit began
and the day after it was completed. As is to be expected in classroom-based research, some
students were absent or had to miss part of the assessment period for reasons outside of our
control. Students who were administered the pre- and post-assessment on other days were
not included.

As shown in Table II and Figure 3, Ms Hayley’s class showed a statistically significant
improvement from pre-test to post-test based on performance on each of the three
aforementioned constructs. Their initial performance on the Conceptions of Statistics

Table II.
Mean performance

for Ms Hayley’s class
on the pre- and post-

assessments

Construct
Pre-assessment Post-assessment

Mean SD Mean SD

CoS 0.142 0.148 1.182 0.580
InI 0.571 0.651 2.248 1.175
MoV 0.585 0.495 1.249 0.660

Figure 3.
A plot showing pre-
and post-assessment
performance on the
three constructs of

Conceptions of
Statistics, Informal

Inference, and
Modeling Variability
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construct was 0.143 (sd = 0.148) but that improved to 1.182 (sd = 0.580) (t =�10.32, df = 25,
p< 0.001, d= 2.024). Informal Inference performance was initially 0.571 (sd = 0.651) but that
showed significant improvement to 2.248 (sd = 1.175) (t = �7.105, df = 25, p < 0.001, d =
1.393). Finally, students showed improvement in Modeling Variability, beginning at 0.585
(sd = 0.495) and finishing at 1.249 (sd = 0.660) (t=�5.776, df= 25, p< 0.001, d= 1.133).

Discussion of classroom enactment
Consistent with what we had accomplished in other classrooms (Lee and Thomas, 2011; Lee
et al., 2016), students showed significant improvement in their statistical understandings.
What is notable about this class’s result is it involved a different school than any that had
been previously published and with a less experienced teacher (in number of years in the
elementary school classroom) than in prior published studies. Additionally, it used another
research team’s validated assessment instrument to measure the performance of students.
Thus, we find the results from this particular enactment encouraging. The approach of
using activity tracking as a source of data for classroom instruction seemingly showed
success.

Moreover, this was a class of students who were intentionally separated into a lower-
performing math class but still showed significant improvement. We believe that this is
because the data that students were using came from activities that they already knew.
They were building new understandings from familiar activities that they were tracking,
whether it was a game of tag during recess, using the jump rope, or playing four square.
More details on some of the classroom interactions and finer-grained analysis of classroom
discourse and conversations that support that assertion appear in other publications (Lee,
2018) or will be forthcoming in the future (Lee, 2019). Briefly, we have identified several
instances of students referencing their knowledge of the specific activities and taking pride
in being associated with their data that suggest students were more aware of what the data
represented. For instance, we have seen students dispute whether 55 steps per minute on a
data display would be closer to running or walking based on their own knowledge of what
numbers they tended to record on their devices, students debating which projected set of
data were representative of each student’s recess because of how they thought data should
have been shaped based on their knowledge of specific recess activities, and students
explicitly recalling specific numerical values that they obtained when discussing overall
class data distributions. Seeing students engage in these conversations suggests that they
felt the numbers being used were consequential and relevant to their school day experiences.
This had been the first time that Ms Hayley implemented the unit (and only time, as she left
for a position at another school in a different city the following year), so we did not have a
comparison available. However, in a recorded interview following the unit implementation,
she did report to us that she felt very positively about the unit and the student experience.
Especially noteworthy to her were occasions when students were deviating from planned
step-tracking activities and animatedly identified their deviations on projected class data
plots. According to Ms Hayley, seeing how their own behavior was quantified and related to
others in the class was when she noticed students doing something very different related to
elementary statistics instruction than what she had seen in her previous two years using her
prior, school-issued curriculum which did not involve student-collected data. To her view,
students working with their own tracked data that they could manipulate in their daily
activities was what had made the difference as it made the statistical values more
meaningful for them. This was a finding that was supported in a dissertation study that
involved one of the project team members who helped develop the unit and collected data in
Ms Hayley’s class; in that study, the ability to intentionally manipulate quantities made
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those measured values more engaging for students (Thayne, 2016). A difference in that
dissertation study was that the population involved was undergraduate students, rather
than elementary students. However, the undergraduate students appeared to have a similar
response in that the data they obtained of their own activities and used for analysis made
the statistics content more comprehensible and compelling.

Summary and looking forward
This article reported primarily on three different studies that informed or refined the
strategic use of activity tracking as a source of data for elementary students. The three
studies, which are excerpted from a larger program of research that has and involved
more youth, classrooms, and learning contexts than reported here, serve as one example of
where information and learning sciences can have productive engagements with one
another. Specifically, these projects touched upon practices that represent an important and
growing area of research in information sciences such as personal informatics and self-
quantification. One of the ways that this paper reflects that is through the first study of
adult athletes. By looking at the data practices and meanings that motivated self-trackers
used for their personal contexts, we gained some new understandings of how tracked data
are meaningful and useful. Of special note was how competition with past performance was
an especially meaningful metric, which informed the design of the quantified recess activity.
Another was how self-quantification could serve to calibrate expectations and numerical
values to physical activity. We found that inspection of quantifications of recess activity
could enable learning of elementary statistics content. Specifically, we saw that students
were recognizing what was reasonable for their bodies during intense recess activity and
how outliers affect (or do not affect) measures of center.

These informed and led to larger unit designs that were scaled to entire classrooms
where each student was provided with an activity tracking device and specific content goals
tied to elementary statistics were targeted in the design of classroom lessons and whole
class activities. Using an assessment instrument developed by another team, we found that
significant improvement could be demonstrated even when students were classified as low
achieving through a different assessment administered by their school and were seemingly
in need of some remedial support. This is not to say that what we had engineered through
design of a unit was the best possible outcome, but it was encouraging for us to accumulate
more evidence that the approach we had been exploring could be made effective.

This particular article has been presented as a sort of retrospective on several years of
research activity. As this article had opened, I had stated that the scope of self-tracking and
its pervasiveness has changed substantially when my research group and I began to pursue
this line of work. It is one that I expect we will continue to explore in the future, although
much of the original novelty of the approach has become more routine and familiar. It has
also begun to raise new questions that are worthy of further inquiry.

For example, and often posed in presentations of this work, are questions of privacy and
consent. In the work we reported, and as part of university affiliated and federally funded
research, informed consent has been a necessary and preferred mode of operation. Our
precautions among the students and classrooms with which we have worked have included
providing devices and attaching them to project accounts that cannot be matched to any of the
participating students. Activity tracking that was used in the classrooms where we worked
could not be traced back to any particular individual who was involved in our research. This is
beyond any anonymizing and secure data storage methods we used as a matter of good
research ethics. However, there is now increased awareness of how so many activities of ours
and of children are being monitored by different tools and services. These are becoming a
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greater cause for concern. Imagine if, in several years, it becomes even easier for classes to work
with data that students had obtained from their own activities. Say that a high school statistics
class is able to support students in data inquiry using their own data. Perhaps the data that is
used involves scraping mobile phones for songs most frequently played or lengths of text
messages most often written or time spent on different apps. While data from such sources
could have a great deal of personal relevance to students, it may quickly become information
that they do not want to make public in the classroom or to their teachers. How do the potential
benefits of building on data that are personally relevant conflict with potential concerns for
privacy and risks for harm that may come from compromises in privacy? This is one tension
that both information and learning scientists can jointly explore in the future.

Furthermore, as devices and data transfer have changed and become seemingly easier to
use and initiate, there are open questions about tools that would be the most usable for
students, teachers, and learners in a range of contexts. One promising example that touches
upon expertise and interests in both information and learning sciences comes from the
Scratch programming environment where Dasgupta and Hill (2017) have created sets of
data coding blocks and data visualization tools that allow users to examine user behavior in
the Scratch coding environment. In that case, the broad reach of Scratch as a widely used
coding platform and the ability to inquire about what users do in Scratch opens up some
new avenues for self-tracked data to be made into an educational resource.

Scratch has appeal in that it is free. However, another looming concern is equity of access
to necessary tools and meeting the requirements for technological infrastructure. As it stands
currently, automated activity tracking often uses separate wearable devices that are most
compatible with the most current mobile devices, assume Wi-Fi access and presume some
fluency with technology that is not universally shared. In one related project, a student and I
worked with a different demographic than the one typically associated with self-tracking and
discovered a number of infrastructural differences that affected full participation (Lee and
Briggs, 2014). In that study, the youth involved did not necessarily have access to Wi-Fi or
smartphones or models of smartphones that could retrieve and store data from various
devices. Working with spreadsheets and new software also created additional overhead for
students. Both learning scientists and information scientists must continue to contend with
issues of inequitable access and implicit bias in the design of technologies and information
experiences. Some institutions, such as schools and libraries, may provide common resources
but are still being asked to address, on limited time and budgets, larger structural inequities
that affect what information people can access and use. Indeed, these points about inequities
and their consequences as they relate to self-tracking are cogently summarized from a
sociological perspective by Lupton (2014). Moreover, activity tracking privileges individuals
who are able-bodied. For full inclusion of youth given a range of mobility abilities, what
options are there? In one year of our work, we had one student who was wheelchair-bound,
and the accommodation was to use proxy data and for that student to concentrate on heart-
rate data rather than step data. Still, an opportunity could have been pursued with rolling
cadence on that student’s wheelchair, or potentially GPS data to examine mobility given
different movement options. It may have also been an opportunity to critically examine what
spaces were and were not accessible. Representing all individuals and providing meaningful
access remain core challenges that go beyond presumed technical infrastructure.

These challenges are mentioned to make more prominent the point that as this line of
work began with my team, progress is being made, but obstacles still remain. New
technologies have come to market that make some tasks easier to accomplish but they do
not necessarily easier for all to access or reap benefits. With these changes and tensions,
more collaborative work that merges expertise from different fields is needed. That work
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may look obviously like a study of learning, such as one that involves a classroom. It may
also involve studies of different contexts where learning appears more subtly and is not the
primary driver for participants (such as participating in a favored endurance event). In
considering that this article is one of a handful that have the privilege of helping to
inaugurate a new journal that brings information and learning sciences closer together and
has sought to cover that range in a way that shows these lines of inquiry are mutually
supportive, I am cautiously optimistic that the two fields can make some headway as more
work is completed and reported by others in this journal in the future.
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