
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Computer Science Education

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ncse20

Tabletop games designed to promote
computational thinking

Frederick J. Poole, Jody Clarke-Midura, Melissa Rasmussen, Umar Shehzad &
Victor R. Lee

To cite this article: Frederick J. Poole, Jody Clarke-Midura, Melissa Rasmussen, Umar Shehzad
& Victor R. Lee (2021): Tabletop games designed to promote computational thinking, Computer
Science Education, DOI: 10.1080/08993408.2021.1947642

To link to this article: https://doi.org/10.1080/08993408.2021.1947642

Published online: 01 Jul 2021.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ncse20
https://www.tandfonline.com/loi/ncse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2021.1947642
https://doi.org/10.1080/08993408.2021.1947642
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2021.1947642
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2021.1947642
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2021.1947642&domain=pdf&date_stamp=2021-07-01
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2021.1947642&domain=pdf&date_stamp=2021-07-01

REVIEW ARTICLE

Tabletop games designed to promote computational
thinking
Frederick J. Poolea, Jody Clarke-Midura b, Melissa Rasmussenc, Umar Shehzadb

and Victor R. Lee d

aCenter for Language Teaching Advancement, Michigan State University, East Lansing, United States;
bDepartment of Instructional Technology and Learning Sciences, Utah State University, Logan, United
States; cDepartment of Computer Science, Utah State University, Logan, United States; dGraduate School of
Education, Stanford University, Stanford, United States

ABSTRACT
There is a growing perception that computational thinking can be
developed in unplugged environments. A recent trend among
these unplugged approaches is the use of tabletop games. While
there are many commercial tabletop games on the market that are
promoted as teaching computer science and/or computational
skills, little is known about how these games are supposed to
support learning. This study investigates the types of tabletop
games that are currently being promoted as teaching computa-
tional thinking, who such games are marketed towards, and how
game designs could provide opportunities for developing compu-
tational thinking. We conducted a content analysis to explore the
type of tabletop games currently being created, their audiences,
and the kinds of game mechanics and design features being imple-
mented to teach computational thinking concepts. In this study, we
created a taxonomy of computational thinking tabletop games that
identified three primary categories (e.g. code building, code execu-
tion, and puzzle games) . Games that fall into our categories share
similar learning claims, target audiences, and game mechanics. Our
taxonomy offers a starting place for educators who want to explore
the use of tabletop games for introducing computational thinking
concepts in unplugged settings, suggestions for designers, and
areas of investigation for researchers.

ARTICLE HISTORY
Received 21 July 2020
Accepted 22 June 2021

KEYWORDS
Tabletop games;
computational thinking;
content analysis

Introduction

CS Unplugged was developed to expose students to problem solving skills and Computer
Science (CS) concepts in a fun way, without a computer (Bell et al., 2009). This unplugged
approach captures the essence of Wing’s definition of computational thinking (Bell &
Roberts, 2016). While there is an ongoing debate in CS education about what CT is
(Guzdial et al., 2019), some researchers have argued that CT can be developed and
experienced in unplugged, or non-digital, environments and materials before any coding
is involved (Lee et al., 2021; Looi et al., 2018). A recent trend among these unplugged

CONTACT Frederick J. Poole poolefre@msu.edu Center for Language Teaching Advancement, Michigan State
University, East Lansing, United States

COMPUTER SCIENCE EDUCATION
https://doi.org/10.1080/08993408.2021.1947642

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0001-5434-0324
http://orcid.org/0000-0001-6434-7589
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2021.1947642&domain=pdf&date_stamp=2021-06-30

approaches is the use of tabletop games (Tang et al., 2020). Tabletop games are analog
games that are played on a flat surface and include both board and card games.
Researchers have proposed the use of tabletop games to teach CT concepts because
the rules and mechanisms within them can embody fundamental ideas and practices for
computation (Berland & Lee, 2011; Horn et al., 2012), and given supportive context,
facilitate transfer when learners start programming in digital environments (Kafai &
Vasudevan, 2015; Lee et al., 2020).

While some researchers have designed and evaluated their own custom tabletop
games to promote CT (Apostolellis et al., 2014; Gresse von Wangenheim et al., 2019;
Kuo & Hsu, 2020) there are also a number of commercial tabletop games appearing on the
market. These tabletop games are marketed as promoting computer science (CS) learning
and/or computational skills, although empirical research needs to be done to support
these claims. A casual glance at the different games would suggest that there tend to be
some similar designs. For instance, many tabletop CT games ask players to plan move-
ment on a two-dimensional grid space that is reminiscent of the turtle interaction
paradigm in the LOGO programming language (Papert, 1980). Presumably, the antici-
pated benefits of this turtle interaction metaphor for LOGO would apply to playing these
games. For those who have studied the history of LOGO, there is mixed history on the
programming language’s impact on student learning (Ames, 2018) particularly when its
use lacks teacher support. Other game designs involve players following a linear path with
their tokens, common in many other board games. Considering there seems to be some
regularity, this paper reports on a content analysis to explore the type of tabletop games
currently being created, their audiences, and the kinds of recurring game mechanics and
design features being implemented to teach CT concepts. These tabletop games are
complex environments involving both gaming and learning mechanics that interact in
dynamic ways. Understanding not only the types of games and game designs that are
available, but also how such game designs are presenting CT concepts can be useful for
thinking about whether and how they should be situated within a curriculum and used by
teachers.

In this paper, we present the results of our content analysis and provide design cases of
three tabletop games to illustrate how game designs afford opportunities for learning
various CT concepts. In the following literature review, we first provide our definition of CT
and the CT concepts that were used to explore learning potential and objectives within
the tabletop games. Next, we review how tabletop games have appeared in other
educational settings. We then discuss what possibilities and challenges exist for using
tabletop games to promote CT learning and review the studies that have explored this
topic to date, specifically investigating the game design approaches employed in the
literature.

Literature review

CT concepts

Jeannette Wing (2006) is seen as having influenced uptake of the term “computational
thinking”, describing it as a skill that draws on the fundamental computer science
concepts pertaining to problem solving, system design, and understanding human

2 F. J. POOLE ET AL.

behavior. Wing’s (2006) description of CT can be seen as an attempt to decouple problem
solving skills from CS content knowledge. She argued that CT skills such as decomposition
and abstraction can help with problem solving of any kind. This decoupling of CT skills
and content knowledge was further elaborated by the taxonomy developed by Brennan
and Resnick (2012), in which they separated CT into different categories of concepts,
practices, and perspectives. These taxonomies are useful design and research tools for
digging deeper into different aspects of CT, as demonstrated by Apostolellis et al. (2014)
in their review of CT. For example, Brennan and Resnick (2012) categorized being incre-
mental and being iterative as a practice, separate from the concept of loops. The CS
unplugged approach of teaching CT without the use of computers (Bell et al., 2009;
Brennan & Resnick, 2012) and seeing strategic board games as media for CT (Berland &
Lee, 2011) were continuations of this notion of decoupling of skills and content
knowledge.

The present study focuses on the frameworks presented by Brennan and Resnick
(2012), Shute et al. (2017), and Brennan and Resnick (2012) centered their framework on
the block-based coding platform Scratch. They divided ideas into concepts (e.g. loops,
parallelism, data), practices (e.g. iteration, debugging, abstracting), and perspectives
(expressing, connecting, questioning). Their concepts map onto individual Scratch blocks,
whereas their practices deal with designing a program.

While Brennan and Resnick (2012) included coding concepts in CT, others propose that
CT is similar to problem solving (Shute et al., 2017). The framework proposed by Shute
et al. (2017) is based on a definition of CT as “the conceptual foundation required to solve
problems effectively and efficiently, with solutions that are reusable in different contexts”
(p. 151) and draws from a number of studies and frameworks, including that of Brennan
and Resnick (2012). Shute et al. (2017) identified decomposition, abstraction, algorithms,
and debugging as the components of CT that occurred most frequently in the literature,
and included them as skills engaged in CT. Abstraction is divided into data collection/
analysis, pattern recognition, and modeling; algorithms include subcategories of algo-
rithm design, parallelism, efficiency, and automation.

Among the recent notable attempts of defining and categorizing CT concepts in
specific contexts, Brennan and Resnick (2012) provided a framework for block-based
programming tools, and Weintrop et al. (2016) developed a taxonomy aimed at bringing
CT to math and science classrooms. We hope that our present taxonomy will help
researchers and practitioners evaluate commercially available board games with CT
learning claims. We developed our taxonomy for categories within CT from
a combination of the frameworks from Brennan and Resnick (2012) and from Shute
et al. (2017). In this taxonomy, CT includes skills employed in the process of designing
a solution to a problem: debugging, abstraction, and algorithm design. In addition, CT
includes the knowledge required to implement a solution in a way that computers
understand: control statements, data, language-specific syntax. These six areas of CT are
defined in Table 1.

Research on tabletop games for learning

Tabletop games have been used and investigated for learning in a variety of contexts
including medicine (Beylefeld & Struwig, 2007; Kaufman & Flanagan, 2016; Reeve et al.,

COMPUTER SCIENCE EDUCATION 3

2008), mathematics (Elofsson et al., 2016; Jimenez et al., 2011; Siegler & Ramani, 2009;
Skillen et al., 2018), second language learning (Poole et al., 2019), and climate change
(Castronova & Knowles, 2015), among other areas (King & Cazessus, 2014; Quintana et al.,
2020; Thomas et al., 2019). While the topics and content areas for which tabletop games
are used are diverse, the rationale for researchers using and investigating such games can
be broadly parsed into two categories. On one side are those who argue that games are
inherently enjoyable and thus can motivate learners to do seemingly monotonous tasks;
on the other side are those who argue that tabletop games involve specific game
mechanics and structures that promote learning.

Researchers who see educational tabletop games as a motivating force tend to create
and investigate quiz-based or trivia games (Nicholson, 2011). Such games should be more
closely tied to gamification, which explores the use of game elements, in lieu of actual
games, for non-gaming contexts (Deterding et al., 2011). In these games, players typically
roll a die or draw a card, and are then prompted with a question related to the topic being
studied. Answering the question correctly is rewarded with points or progression towards
an in-game goal. Researchers investigating these types of tabletop games have found that
players view them positively (Beylefeld & Struwig, 2007; Ogershok & Cottrell, 2004; Rose,
2011) and have reported learning gains (Rose, 2011; Struwig et al., 2014). Though research
has shown that by simply framing an activity as a game, learners tend to rate the activity
more positively (Lieberoth, 2015), thus calling into question enjoyment as a measure of
validation for games.

Other researchers have investigated the benefits of designing for learning through
tabletop game mechanics, rather than as a product of executing game mechanics. These
studies have explored games that involve the integration of intrinsic motivation into
educational games, which has been argued to facilitate players entering a state of flow
(Csikszentmihalyi, 1990) and contextualize learning within a system of rules (Habgood &
Ainsworth, 2011). For example, several studies have explored the effect of rolling dice and
counting while moving a game piece on number sense and mathematical knowledge
(Elofsson et al., 2016; Siegler & Ramani, 2009; Skillen et al., 2018). These studies generally
find that simple game mechanics of rolling dice and then counting and moving a game
piece, has a strong impact on learners’ number sense. Poole et al. (2019) illustrated how
a non-linear board allowed for meaningful language learning opportunities, and further
how game design can encourage collaboration by creating tasks (e.g. defeating
a “baddie”) that cannot be completed alone. Tabletop games have also been argued to
support teaching complex systems because players can manipulate different mechanics

Table 1. Areas of Computational Thinking.
CT Area Definition

Debugging Detecting, investigating, then fixing errors in a procedure
Abstraction Finding or constructing patterns within problems and solutions, in order to facilitate understanding.
Algorithm

Design
Thoroughly defining steps to solve a problem. These steps may be intended to be executed linearly,

in a sequence, or non-linearly, concurrently or in event-driven programming
Control

Statements
Choosing between instructions to follow next based on some condition

Data Structures or methods involved in keeping or modifying values in a memory
Syntax A system of well-defined rules for communication, i.e. a language

4 F. J. POOLE ET AL.

and pieces within the game and explore how they affect the system (Castronova &
Knowles, 2015).

In recent years, researchers have started exploring the use of tabletop games to
promote CT and the learning of CT concepts. Researchers have argued that tabletop
games are possible spaces for exploring these concepts and skills because players often
engage in computation even when playing tabletop games not specifically designed to
teach such concepts (Berland & Lee, 2011). Researchers further argue that unlike in digital
games, in tabletop games the game mechanics are transparent, and thus more salient to
players (Horn et al., 2012).

Research on tabletop games for CT

Research investigating the use of tabletop games to promote CT has focused on
researcher-designed games and conceptual arguments. Tabletop games used in empirical
studies, similar to games used in other educational settings, fall into a few categories.
Some games promote learning by giving players code to execute and then movement is
determined by the result of that execution. Other games attempt to integrate learning via
game mechanics that typically involve an action queue and or a puzzle to be solved.

In one of the first studies investigating the use of tabletop games to teach computer
science concepts, Singh et al. (2007) invited undergraduate students and five lecturers to
play C-Jump. C-Jump is a linear tabletop game in which players roll a dice and execute
code based on the dice roll. For instance, if a player is on a square with the expression:
x + 2, then the player adds two to the dice roll and moves the game piece along the board.
While the students reported enjoying the game and agreed that it promoted learning, the
lecturers were more critical and skeptical of the game’s learning value. One lecturer stated
that the game focused too much on syntax and not enough on programming skills, such
as problem solving.

In game designs that have integrated CT concepts into game mechanics, designers
have relied on an action queue. An action queue adds a series of steps (e.g. move
forward, turn left) to a queue that will be executed and presumably promotes learning
of algorithm design. For instance, Gresse et al. (2019) designed the game SplashCode. In
the game, players draw five movement cards (e.g. move forward, turn left) to be placed
into an action queue of three cards. These action-queue cards are then executed to
move the player’s character around an open-grid board. The goal of the game is to get
the player’s character to a designated location before other players do. In another
study, Kuo and Hsu (2020) designed Robot City, a game that also has players move
around a grid using an action queue of cards. However, players have multiple tasks to
complete on the grid. For example, players are asked to pick up material and deliver
them to spatial locations. To improve the efficiency and complete tasks quicker they
can create more advanced action queues that include conditional statements and
procedures.

Other tabletop games that have integrated CT concepts into game mechanics have
relied on puzzle features. These games target a wide range of CT concepts including
abstraction, algorithm design, and control statements, but what makes these games
unique from action-queue games is that they often require multiple iterations of simula-
tion and debugging in order to solve the puzzles. For example, Apostolellis et al. (2014)

COMPUTER SCIENCE EDUCATION 5

designed the game RabBit EscApe. In this game, players must manipulate wooden tiles
that are connected to each other by magnets to create a path for a rabbit to escape an
ape. The authors of this game argue that players will develop algorithmic thinking as they
create a “recipe” to fit the wooden tiles in a way that matches the polarity of other tiles
while also creating a suitable path for the rabbit. Given the complexity of the task, they
suggest that learners will engage in an iterative process of simulating and debugging
potential solutions. In another study, Lee et al. (2020) used the ThinkFun game On the
Brink in a classroom setting to promote CT and transfer to a digital version of the game in
Scratch. In the game On the Brink, players move a robot around a grid towards an
endpoint. To do so, they must identify a pattern of colors hidden in the grid and then
explore solutions to the puzzle by adding cards to an action queue that is executed by the
players. Puzzle-based games differ from other action-queue games in that there is only
one solution to each problem.

Finally, Tsarava et al. (2018) designed three tabletop games and explored student and
expert gaming experiences across all three games. Interestingly, the three games fall into
the aforementioned categories. The first game they designed is a race-to-the-end game
called The Race, in which players solve coding problems on a card to advance game pieces
across a linear board. They also designed an action-queue game, Treasure Hunt, in which
two players create an action queue involving movement and control statement cards to
move either a crab or a turtle around a grid to collect items. Finally, their last game is
a puzzle-based game, Patterns, in which players identify patterns to solve puzzles before
other players do. They claim that The Race introduces control statements and data
concepts, Treasure Hunt introduces algorithm design and abstraction, and Patterns intro-
duces control statements and abstraction.

The present study has three primary goals. First, we identify the landscape of tabletop
games that are marketed as promoting CT. Secondly, we offer a taxonomy for categoriz-
ing these tabletop games based on design features. Finally, we provide design cases for
games that fall into each of our categories to illustrate how game mechanics are intended
to promote development of CT skills and concepts within each game type.

Methods

Our analysis includes three steps: search for games, content analysis, and design cases. In
this section, we first detail our search strategy for locating commercial tabletop games
that make marketing claims around teaching CT. Next, we provide a description of
content analysis and how this approach was used to summarize the current tabletop
games available for learning CT. Finally, we provide a description of design cases.

Search strategy

This review used a three-phase search. In the initial search the following terms were used:
“computer science” OR “computational thinking” OR “programming” OR “coding” AND

“tabletop games” OR “board games” OR card games”
In this initial phase, websites were searched for commercial tabletop games that are

believed and/or marketed to promote CT, computer science, and/or general program-
ming skills. Commercial games were our focus because a disproportionate amount of

6 F. J. POOLE ET AL.

educational games in research has focused on researcher developed games and thus
relatively little is known about the design of commercial ones (Lee, 2020). All commercial
games that appeared to involve computer science in any form were included resulting in
the identification of 22 games. Publisher websites that specialize in designing computa-
tional thinking/computer science games and/or websites that review tabletop games (e.g.
https://boardgamegeek.com/) were also identified. In the second phase, both the pub-
lisher and tabletop game review websites were further investigated for additional games
that made claims to teach CT skills. Nineteen additional games were identified, bringing
the total to 41. Finally, in the third phase, we searched for research involving CT tabletop
games using the following library databases: Education Source, ERIC, and Google Scholar.
The search strings above were used in this search.

This search resulted in 171 articles from Education Source and ERIC, and 17,000+ articles
from Google Scholar. Abstracts for the first 20 pages (200 results) in Google Scholar were
examined. After 20 pages the results became irrelevant to games and CT. The abstracts of
articles from both searches were then reviewed to confirm that the studies were inves-
tigating the CT skills in tabletop games. We then identified tabletop games used in each of
these articles that were unique from our already established list and identified 8 addi-
tional games to bring the total number of games identified to 49. Next, we examined the
inclusion/exclusion criteria used to identify which games were included in this analysis.

Inclusion and exclusion criteria
Tabletop games investigated in this analysis were included if they met all the following
criteria (See Table 2):

After applying the inclusion criteria 25 games were dropped, leaving 24 games for
analysis. Of the 25 games dropped, 5 were dropped because they were researcher
designed games and thus were not readily available to the public, 12 tabletop games
were dropped because they did not specifically claim to teach CT concepts, 7 were
dropped because they either were not tabletop games or required the use of an iPad or
other digital screen, and 1 was dropped because it has not yet been released. It is
important to note that the 12 games dropped because they did not specifically claim to
teach CT concepts were originally added for review because either a researcher or
a reviewer on a tabletop game review website identified them as games that promote
CT. While they do not explicitly claim to teach CT, these tabletop games may provide
valuable insight into the design of future games.

Table 2. Inclusion Criteria.
Inclusion Criteria Rationale

The game includes either an instructional manual,
instructional video, or in-depth description of
gameplay. Further game instructions were in English.

To conduct the analysis, it is important to understand how
the game is played. This requires either an instructional
video or manual that was presented in English.

The game is either marketed or promoted by “the
company”/“designer” as a game to promote CT skills, as
identified in Table 1 above.

Many board games are argued to contain programming
concepts. Thus, this study is only looking at games that
are explicit in their intent to teach CT.

It is a tabletop game, which includes board games, card
games, and other analog games. Unplugged activities
that are not games were not included.

This study is focused on how games and game design are
used to target CT skills so only games were examined.

The game can be purchased or acquired freely. We focus on games that are readily available to the public
for use in classrooms or the home.

COMPUTER SCIENCE EDUCATION 7

https://boardgamegeek.com/

Content analysis

Content analysis is a research tool used for synthesizing concepts or themes within
a selected data. It involves the identification of certain concepts followed by quantification
of those concepts with the help of analytical coding and subsequent categorization of
those analytical codes. Content analysis can provide insight into trends, features, and
relationships between concepts within the target data (Lin et al., 2019). We applied this
technique to the commercial tabletop games identified in our search marketed as teaching
CT. The researchers in the present study had access to physical copies of most of the 24
games. For those we did not have copies of, we consulted online instruction manuals and
videos to understand how the game was played. Analysis based on manuals exclusively has
been a documented strategy used for other analyses of tabletop gaming (see Garcia, 2017).

To explore the types of game mechanics being used within games, we first created
a list of all board game mechanics found on https://boardgamegeek.com/. Then we found
examples of each of these board game mechanics within one of the CT games we
identified. Game mechanics that were not identified in any of the games were then
dropped from the list. Next, we coded all 24 games in terms of whether they contained
one of the remaining game mechanics. It was at this point that we recognized that these
games could be collapsed into three overarching categories: games that used an action-
queue, those that required the execution of code, and those that relied on puzzle-based
mechanics. Given that this matched game designs being developed and explored in the
literature, we felt confident in these categories. Finally, we discussed definitions for these
categories as a group and then used these definitions for our coding scheme, see Table 3.
Two researchers used this coding scheme to code each of the games. Cohen’s Kappa was
calculated as a measure of inter-coder reliability. As we see in Table 3, Cohen’s k for each
of the game types was .78 or greater, suggesting good reliability.

In addition to coding for game type, we also coded each game for the targeted age-
group based on suggestions by the publisher, the narrative theme (e.g. robots, space) and
complexity (e.g. simple, complex), learning claims made either on the publisher’s website
or in the instructional manual, and the gameplay configuration (e.g. single-player, colla-
borative, competitive). Narrative complexity was coded as either simple or complex.
A simple narrative provides players with a goal and agents to complete the goal. For
instance, in Cosmic Coding players are given a spaceship (agent) and a task to collect all
the stars (goal). Complex narratives include additional plot information such as

Table 3. CT Tabletop Games Taxonomy.

Game Type Description Example
Cohen’s
Kappa

Code Building
(N = 8)

Players create code or an algorithm by placing a series of movements or code
into an action queue to later be executed by the player, another person, or
a robot.

Robot
Turtles

0.84

Code
Execution
(N = 6)

Players are given a code or an algorithm to be executed. Movement or
progress in the game is dependent on the correct execution of the code.
Players do not create code or an algorithm in these games.

Coding Farmers

0.78
Puzzle Games

(N = 2)
Players are presented with a puzzle that can be solved by identifying or

matching a pattern.
Rover

Control
1.00

Combination
(N = 8)

A combination of two game types Potato
Pirates

NA

8 F. J. POOLE ET AL.

https://boardgamegeek.com/

information about the setting, agent/character background stories, and/or rationale for
completing goals. Finally, the learning claims were identified from the publisher’s website
or the instructional manual, using the keywords in Table 4 below. Synonymous words or
phrases – for example, “programming language” is synonymous with “syntax” – also
counted as a learning claim, and all claims were collapsed into the six basic categories
described in Table 1.

Design cases

Design cases are descriptions of “real artifact[s] or experiences that [have] been intention-
ally designed” (Boling, 2010, p. 2). In the present study, the artifacts are tabletop games
that have been intentionally designed to promote CT skills and/or knowledge. Design
cases do not provide validation for designs, rather they are a form of summative discourse
about the principles and conjectures that designs are based on. Specifically, we explore
the conjectures about learning that are made in tabletop game designs.

To systematically build the design cases, we applied Lin et al.’s (2013) learning
mechanic-game mechanic (LM-GM) model to three games that fall into each of the
game types identified in our taxonomy. The LM-GM model was designed to help
researchers and educators identify serious games mechanics that are argued to be
“game components that translate a pedagogical practice/pattern into concrete game
mechanics directly perceivable by a player’s action” (Castronova & Knowles, 2015, p. 395).
When using this model, Arnab et al. (2015) suggest: first identify the learning mechanics
(LM) and game mechanics (GM), then describe their relationships and implementation. In
other words, how do GM afford opportunities for LM. Next, users should illustrate the
dynamic appearance of both LM and GM during gameplay. It is important to note here
that while Arnab et al., (2015) do provide several examples of LM and GM in their paper,
they do not explicitly define these examples and neither do they claim that their list of
examples to be exhaustive. Rather, it is up to the researcher or user of the framework to
define the LM and GM in the analysis. Researchers have used this model to design serious
games (Arnab & Clarke, 2016), create stealth assessments within digital games (Baalsrud-
Hauge, et al. 2015), and to support students learning how to design educational games
(Kalmpourtzis & Romero, 2020). Unlike previous studies, the present study uses the LM-

Table 4. CT Learning Claims.
CT Area Example Claim

Debugging “Students learn experiential learning, debugging, limited syntax, order of operations . . . ” – (Robot
Turtles)

Abstraction “Teaches simple concepts like loops, branches, functions, conditionals and advance concepts like
Inheritance, Parallelism, List, Stack, Queue and Algorithm writing”. – (CoderBunnyz)

Algorithm
Design

“Playing Code Master won’t just teach you principles behind programming, you’ll also build
planning, sequential reasoning and problem-solving skills”. – (Code Master)

Control
Statements

“It teaches the child basic commands of a programming language, such as ‘if’, ‘else’, ‘switch’, and
introduces variable ‘x’ concept”. – (C-jump)

Data “It . . . exposes kids to fundamental programming concepts like control structures, data structures,
Boolean logic and operators, and assignment and mathematical operations”. – (Code
Monkey Island)

Syntax “Introduces the basics of java and programming concepts”. – (Coding Farmers)

Note: Keywords are in bold.

COMPUTER SCIENCE EDUCATION 9

GM model to examine completed game designs rather than to design new games. In our
design cases, we first provide a brief overview of the game. Then we describe the GM in
detail. Finally, we explore the conjectures about learning by applying the LM-GM model.
The goal of this model is to “determine at which point gameplay and pedagogy inter-
twine” (Arnab et al., 2015, p. 398). It is at this intersection that potential learning
opportunities afforded by the game can be observed.

Results

Results of the content analysis are organized into our taxonomy that contains four
categories of game types: code building, executing code, puzzle, and combination (see
Table 4). Within each category, we present findings on game configurations, themes,
narrative, and learning claims followed by a design case.

Code building games

Code Building games are those in which players create code via an action queue and then
execute the code. These games are designed for single player (N = 4), cooperative (N = 2),
and competitive (N = 2) configurations and involve controlling and moving an agent
through a grid-like space (See Figure 1). Thus, the coding in these games is based on
movement and the syntax is directional arrows. These games draw inspiration from the
LOGO Programming language, which also uses directional commands to move a turtle
around a grid system (Papert, 1980). Eight games were identified within this category (see
Table 5). All games in this category are designed for younger learners who are not reading
or are emergent readers. Seven of the games have robot-based themes and one has
a space theme. Three of the robot-themed games use animal robots. The narrative for
these games is simple and involves a directive to reach a specific target. For example, in
Coder Bunnyz, players are told that they must retrieve their carrot and bring it home.
Games with a complex narrative provide stories that attempt to provide context for the

Figure 1. Robot Turtle Grid with Four Robot Turtles in the corners and Four Destination Gems in the
Center.

10 F. J. POOLE ET AL.

gameplay. For example, in Robot Turtles, an additional story book provides a narrative and
rationale for several board configurations. To increase difficulty in these games, obstacles
are introduced at higher levels and require players to either create a new path or use
control statements to get around them. Finally, learning claims made by these types of
games focus on CT employed in designing a solution to a problem, such as algorithm
design (N = 8), abstraction (N = 5), and debugging (N = 3). Some games claim to teach
control statements (N = 4), and some claimed to teach data (N = 2) and syntax (N = 1)
concepts. The following design case provides an in-depth look at one of the games in this
category.

Design case: robot turtles
Overview.

In Robot Turtles, two to four players program robot turtles to reach a jewel that is
placed somewhere on a grid (see Figure 2). Once a player reaches their jewel, they win the
game. The game has many levels and introduces obstacles on the paths to make the play
more challenging.

Game Mechanics and Rules.
The primary game mechanic in Robot Turtles is placing a series of coding cards

(Forward, Rotate Left, and Rotate Right) face up that indicate which way a player wants
their turtle to move. The players, called Turtle Masters, lay down the cards. Then, the Turtle
Mover, a teacher, parent, or more experienced peer, executes the code on the board by
moving the player’s turtle. A secondary mechanic is the use of function cards. In more
advanced levels, players can use function cards to define a series of steps to be called with
the use of one card, rather than repeating the same steps. Finally, there is a debugging
mechanic. This is a game card that the player can hit if they notice an error in their code.

There are two types of rules that provide parameters around how the game is played.
The first rule relates to the obstacles (ice blocks, brick blocks, and crates). Each obstacle
requires a unique approach to overcome them. An ice block triggers the use of a laser, the
brick triggers a need to go around, and the crate requires the player to push it out of the
way. These obstacles allow for more challenging paths and more complex code.
The second type of rule is applied to provide scaffolding. This rule states that in game

Table 5. Code Building games.

Game Year Age Theme
Narrative

Complexity Learning Claims

Robot Turtles 2013 4+ Animals/
Robots

Complex Debugging, abstraction, algorithm design, data,
syntax

Coder Bunnyz 2016 4+ Animals Simple Debugging, abstraction, algorithm design, control
statements, data

LittleCodr 2017 4+ Robots Simple Abstraction, algorithm design
Future Coders

Robot Races
2018 4+ Robots Simple Algorithm design

Code & Go Robot 2016 4+ Animals/
Robots

Simple Algorithm design

Mojobot 2019 4+ Robots Complex Abstraction, algorithm design, control statements
Cody Roby 2014 4+ Robots Simple Algorithm design, control statements
Bits & Bytes Card

Game
2014 All Space Simple Debugging, abstraction, algorithm design, control

statements

COMPUTER SCIENCE EDUCATION 11

version one, players only play one card at a time and then the Turtle mover executes it. In
the second version of the game, players add three cards at a time and in the last version,
players add all the cards needed to the action queue to reach the jewel.

LM-GM Analysis.
Opportunities for learning and developing CT skills come when players create an

action queue and when the code is executed or enacted by the Turtle Mover. By creating
an action queue (the game mechanic), players demonstrate their ability to plan
a sequence of moves (the learning mechanic). Placing a series of cards has been argued
to help learners develop an understanding of the computational concept sequencing
(Brennan & Resnick, 2012). This illustrates how the LM and GM blend into pedagogy. This
game is unique from other action queue games because rules explicitly state that the
Turtle Mover (game mechanic) should execute the code and not the player. This may help
players understand how code is executed by a computer once a command is given.
Further, this places emphasis on writing the code sequence (learning mechanic) rather
than the enactment of the code on the game board. Another opportunity for learning is
created by using the debug card. When mistakes are made, players are encouraged to
slap a debug card (game mechanic), which gives them an opportunity to fix their code
(learning mechanic). This may help in developing the players’ understanding of program-
ming as an iterative, problem-solving task. Finally, when players use the function card
(game mechanic), they can engage in abstraction, by identifying (learning mechanic)
a series of codes that can be reused in other parts of their queue. Similar to the tables
created in Arnab et al., (2015), Table 6 illustrates how the game mechanics connect to
learning mechanics.

Code execution games

Code Execution Games are those in which players are presented with a code or
a sequence of code to execute. There are six games in this category (See Table 7). All

Table 6. The LM-GM analysis of Robot Turtles.
Game Mechanic Learning Mechanic Implementation
Usage
Action

Queue
Plan Adding cards to the action queue Players add cards to action queue based on a plan

that they wish to enact.
Grid/ Capture Experimentation Open-ended board with a grid and a jewel placed

on the grid as the objective.
The grid constrains the

potential
movement
and provides
a space for
planning.
While the
jewel gives
the learner
a target.

Function
Card

Identify patterns Players are encouraged to use
fewer cards via the function
card.

By encouraging the use of less cards via the
function card mechanic, players are encouraged
to identify patterns that can be abstracted.

Turtle
Master

Observation/
Analyze

Turtle master enacts the code and
debug card.

Because the turtle master moves the turtle, the
player can observe and analyze their code.

12 F. J. POOLE ET AL.

these games are played with multiple players and have a competitive gameplay config-
uration. Executing the code requires players to integrate information from either a dice
roll (N = 2) or from the current state of the board (N = 4). These games target older
learners with most games suggesting an upper elementary age (10+) as the starting point.
The themes in this category are more diverse and include sports (N = 1); space (N = 2);
animals (N = 1) and farming (N = 1). None of the games we identified in this category have
robot themes and all the narratives are simple. Players are presented with a linear board
and are given a simple explanation for moving their character to the end goal. For
example, in Code Monkey Island, the objective is to get three monkeys to the banana
grove. The learning claims focus on CT for implementing a solution to a problem, such as
teaching syntax (N = 5), data concepts (N = 4), and control statements (N = 5). Only one
game in the executing category claimed to teach algorithm design.

Design Case: Coding Farmers
Overview.

Coding Farmers is played with two to four players (See Figure 2). Each player draws
cards from a draw pile and executes those cards to move their tractor across a linear board
towards a farm. Along the path to the farm are several obstacles that players must
navigate around. Each player can hold a maximum of three action cards in their hand
and each action card has instructions written in English as well as in Java code (See
Figure 3).

Game Mechanics and Rules.

Table 7. Code Execution Games.
Game Year Age Theme Narrative Complexity Learning Claims

Coding Farmers 2015 7+ Farming Simple Control statements, data, syntax
Code Monkey Island 2014 10+ Animals Simple Control statements, data
C-Jump 2005 11+ Sports Simple Control statements, data, syntax
Cosmic Coding Game 2019 6+ Space Simple Algorithm design, control statements, syntax
Coding is Good 2016 10+ None None Syntax
Astro Coders 2018 10+ Space Simple Control statements, data, syntax

Figure 2. Coding Farms Code Cards.

COMPUTER SCIENCE EDUCATION 13

The primary game mechanic involves drawing an action card and then executing code
on the card. For example, one card might read, “if the die roll is greater than 2, then move
forward two spaces”. This game mechanic acts similar to many quiz-based games in that
players are given a problem to solve and then are rewarded with gameplay based on
a correct answer. However, it adds in the element of chance by rolling the die.
Subsequently, data concepts, and more specifically, variables, can be simulated by rolling
the die. The die acts as a variable that is constantly being changed each time a player rolls
the die. The value of the die is then used within the pre-given functions to be executed.
Most of the problems presented in the cards target control statements. There are two
types of action cards: (1) English and Java and (2) Java. In beginner mode, players use
action cards with both English and Java. These cards act as a form of scaffolding in that
they provide support (e.g. English) for the Java syntax. Once the players become comfor-
table with the Java syntax, they can play in advanced mode by only using the Java cards.

Players can only hold three action cards at a time and can choose to play a card
depending on their location on the board. Although the game is played by traversing
a linear path, there are obstacles, which makes playing certain cards more strategic at
different points in the game. By allowing players to a) only hold a limited number of cards,
and b) select which card to play, Coding Farmers provide players with a sense of autonomy
that may not exist in other linear tabletop games.

LM-GM Analysis.
Coding Farmers intends for players to learn Java through game play. There are three

ways that learning is assumed to occur. First, by using the cards (game mechanic) to
execute code containing control statements, it is assumed that players may gain inciden-
tal knowledge about the functionality and syntax of control statements. To win the game,
players should evaluate code (learning mechanic) on all three cards in their hand and
determine which card will allow them to advance farthest on each given hand. Secondly,
by transitioning from action code written in simple English to code written in Java, the
game attempts to provide a form of scaffolding to learners as they move towards
scripting. Again, there is an assumption that by observing this code and executing the
code repetitively (learning mechanic), learners will make connections between simple
English and Java code. Finally, rolling the die (game mechanic) and adding the values
(learning mechanic) to the executable code provides a simulation of how variables are

Figure 3. Coding Farmers Board.

14 F. J. POOLE ET AL.

applied. Table 8 below illustrates how the game mechanics combine with learning
mechanics to provide learning opportunities in the game.

Puzzle Games

Puzzle games require players to either identify or match a pattern to complete a task. We
identified two puzzle tabletop games in our content analysis (See Table 9). Both games
are designed around a robot theme. In one game, the objective is for the player to fix the
robot. In the second game, the objective is to direct the robot along a path. Both games
are designed around pattern matching. Players are given a pattern or a set of conditions
and are tasked with matching the pattern or set of conditions on the game board. The
learning claims for these games included algorithm design, control statements, and data.

Design case: rover control
Overview.

Rover Control is a single player game designed around patterns and paths. The game
contains 40 different levels, or puzzles, that increase in difficulty as they progress. The
objective of each level is to help the rover move from the starting point to the endpoint.
Each level is a graph containing nodes and edges (See Figure 4) and the rover can move
from one node to another following an edge.

Table 8. The LM-GM analysis of Coding Farmers.
Game

Mechanic
Learning

Mechanic
Implementation Usage

Selecting
a card to
execute

Generalization/ Discrimination Placing cards to move a tractor

Players must
select
between
three cards
on each
turn to
determine
which card
will give
them the
best

opportunity
to win.

Reading the
code on
the cards

Observation
and
repetition

Code to be executed is on
cards.

Code is presented in both English and Java, giving
players opportunity to observe both forms multiple
times.

Question &
Answers

Identify The code to be executed
represents a question to
be answered.

Executing the code is how players determine which
card is best and how far they can move on the
board.

Competition Competition/
Feedback

Players attempt to reach the
barn first.

Players race to the end giving them motivation to
pick the best card. Players also check that other
players are executing code correctly.

Table 9. Puzzle Games.
Game Year Age Theme Narrative Complexity Learning Claims
Rover Control 2017 8+ Robot Simple Algorithm design, control statements
Robot Repair 2017 8+ Robot Simple Data

COMPUTER SCIENCE EDUCATION 15

Game Mechanics and Rules.
The primary mechanic in rover control is pattern matching. On the board, players have

a series of paths connected by number-labeled nodes. Players are given a starting number
and a finishing number to dictate where the rover must go. They are then presented with
a color-coded pattern (e.g. red, blue, red) that they must follow to complete the level. The
secondary game mechanic comes in the form of decision nodes that have various names
(e.g. storage station, data station, charging station) (see Figure 5). These decision nodes
prompt the learner to make a decision based on where they are or what they currently
hold in the game. For instance, one decision node asks if the player is currently at
a charging station, if they are, they should continue on to a green path, if they are not,
they should continue on to a blue path. Through these secondary mechanics, the game
instantiates concepts like loops, conditionals, and variables, which fall into our CT cate-
gories of control statements and data.

Figure 5. Special Nodes in Rover Control that target Conditional Statements.

Figure 4. Rover Control Challenge book.

16 F. J. POOLE ET AL.

LM-GM Analysis
The pattern matching mechanic (game mechanic) in Rover Control instantiates the CT

practice of abstraction by requiring learners to identify (learning mechanic) and then
reuse (learning mechanic) a series of steps in different parts of the levels. In addition to
embodying abstraction, this mechanic has the potential to provide players with an
opportunity to learn algorithmic thinking and sequencing as players simulate (learning
mechanic) potential paths through the nodes using the provided patterns. In other words,
players must plan a sequence of moves based on the pattern and then test it out. Rover
Control also could support deduction through a trial-and-error approach in which the
learner colors a path, simulates the proposed path, and then evaluates the functionality of
the path. Based on the results, the player can make adjustments. In Rover Control, players
begin with very basic patterns and puzzles and slowly increase in difficulty until the final
levels when multiple game mechanics are introduced. Control statements are introduced
in this game via special nodes (game mechanic) that ask players to make decisions
(learning mechanic) about the next color in their pattern and/or what their game piece
currently holds. While these nodes make the pattern matching task more complicated and
perhaps more fun, the learning assumption is that players will develop knowledge about
control statements incidentally by enacting the puzzles to test their solutions. Table 10
below illustrates how game and learning mechanics provide opportunities for learning.

Combination games

The final set of games includes games that fall into two categories (See Table 11). These
were either games with code building and puzzle mechanics (N = 4) or code building and
code executing mechanics (N = 4). There were no games in our corpus with puzzle and
code executing mechanics. The code building and puzzle mechanics included games that
used an action queue while trying to either navigate a puzzle-like path or match a set of
conditions. These games claimed to teach algorithm design (N = 3), debugging (N = 1),
abstraction (N = 1), control statements (N = 1), and data concepts (N = 1). Games that
included code building and code executing codes allowed players to create an action
queue, but then also prompted learners to execute code or an algorithm on some of the
cards in the action queue. These games claimed to teach CT concepts in both the design
process (N = 7) and solution implementation (N = 7). Overall, combination games are
more complex and have more diversity in the themes, board types, play styles, and
learning claims. Themes in this section include pirates, hackers, space, and robots. Only
two games had a complex narrative.

Due to space limitations, we do not provide a design case for this category. However,
the mechanics that are combined are clearly outlined in the previous cases. In the next
section, we discuss the implications of these findings.

Table 10. The LM-GM analysis of Rover Control.
Game

Mechanic
Learning

Mechanic
Implementation Usage

Puzzles Hypothesis/
Repetition

Players make a plan
using game pieces.

Players make hypotheses about how to solve the puzzle,
and then test their hypotheses via simulation.

Non-linear
paths

Modelling/
Analyze

Players enact their plan
by simulating a path.

While simulating a potential solution, players must also
analyze why it did or did not work.

Collaboration Demonstration Players work together to
solve the puzzle.

As players simulate potential solutions, they model paths
and provide examples for their peers.

COMPUTER SCIENCE EDUCATION 17

Discussion

The last five years has seen an increase in the number of commercially produced tabletop
games that are marketed as promoting CT skills. Most of these games are aimed at pre-
elementary and elementary learners. This paper set out to provide an overview of the games
being designed, a taxonomy of the design types, and to provide insight into how games
within that taxonomy may support CT development using the LM-GM model. We identified
four types of games: code building, executing code, puzzle, and combination games.

Our taxonomy parses games based on design features and mechanics. In addition, we
found that games within each category share similar targeted audiences and learning claims,
further lending credence to our taxonomy. Specifically, we found that code building games
targeted younger learners and focused more on CT in terms of solution design. Code
Execution Games targeted older learners and focused primarily on syntax and control
statements. While puzzle games and combination puzzle games targeted older learners,
they included learning claims for CT in both solution design and solution implementation.
We further contend that our taxonomy has implications for how players could conceptualize
CS, design, formal and informal learning contexts, and research, which we discuss below.

Representations of CS

Using tabletop games to engage younger learners may ultimately lead to increased
interested in CS. However, before using such games on a large scale, it is important to
consider how the design of the game represents CS as a practice and the messages it
sends players about what programming is. For instance, code building emphasize how
computation works from a hardware perspective. In other words, computers must be

Table 11. Combination Games.

Game Year
Combo

Type Age Theme
Narrative

Complexity Learning Claims

Code
Master

2015 C + P 8+ Space Simple Debugging, algorithm design, control statements

On the
Brink

2017 C + P 8+ Robots Simple Abstraction, algorithm design

Hacker 2018 C + P 10 + Hacker Complex
Algorithm

design
Turing

Tumble
2018 C + P 8+ Space Complex Data

Race Condition 2011
C + E NA None None Algorithm

design,
control
statements,
data

Potato
Pirates

2018 C + E 10 + Pirates Complex

Debugging, abstraction,
algorithm
design,
control
statements,
data

CoderMindz 2018 C + E 4+ Robots None Abstraction, algorithm design, control statements
Robot Wars 2017 C + E 7+ Robots Simple Abstraction, control statements, syntax

*C = Code Building, E = Code Execution, P = Puzzle

18 F. J. POOLE ET AL.

given commands that will be followed exactly as written. In addition, while these games
do provide the players with a goal or objective (e.g. spatial target), players are allowed
autonomy on how they achieve that goal. Thus, these games focus on the creativity and
open-endedness of programming, but also tend to restrict the idea of programming to
simple sequences of navigational instructions. In code execution games the focus is on the
player’s ability to understand and recognize the programming language that is used to
implement solutions to a problem. This approach limits the view of programming to
a particular context or syntax, but this context-specific knowledge may also transfer to
beginner coding exercises. The third category, puzzle games, tend to frame CS in terms of
ill-designed problems. In other words, programming involves finding solutions to pro-
blems through iterative, trial-and-error like approaches. These approaches, in our view
problematically, tend to restrict creativity by only accepting one solution. Finally, our
fourth category, combination games, are game designs that include either code building
and puzzle mechanics or code building and code execution mechanics. By implementing
multiple game designs, these games can provide a broader framing of what CS and
programming is.

Understanding the implicit messages that are being expressed through these game
designs is particularly important given that research suggests that youth perception and
understanding of CS can impact whether they choose to opt in (Pantic et al., 2018).
Further it is important for educators to recognize not only how CS/CT is being portrayed
when using these games, but also what aspects of CS/CT are being left out when they
choose to teach with these tools. Blanco and Engström (2020) conducted similar analysis
with commercial digital games that made claims for teaching programming. They found
that most digital games focused on developing fundamental programming concepts
which includes syntax, control structures, among others. However, they noted that few
digital games addressed algorithm and design concepts. While algorithm, design, and
syntax are well covered in tabletop games, there are still many computing concepts that
are not addressed in these games, in particular data structures. Game designers should
explore designs that address some of these less covered CS concepts and may consider
drawing inspiration from the commercial digital games that are designed to teach
programming concepts (Blanco & Engström, 2020). Finally, upon completion of this
review we observed that in the current landscape of CT tabletop games, CS/CT concepts
such as state-based, object-oriented, or functional programming are notably lacking.

Implications for design

In the three categories of games we identified, we noticed a clear distinction in the
audience age groups targeted by designs. Games that target young learners use designs
within the code building games category. These games have less diversity in themes with
nearly all games involving robots in some form. They allow players to create an action
queue of movement cards which, when executed, move a game piece towards a spatial
goal. Given that these games target younger learners, the use of an action queue with
movement cards lowers the threshold for introductory CT as literacy skills are not required
(Bers, 2019). Action queues potentially allow for players to attempt to fix problems they
find as they enact the queue, which may facilitate decomposition and simulation in the

COMPUTER SCIENCE EDUCATION 19

process of debugging. However, many of these games are simple, and after a few turns,
players may master the mechanic and thus rarely experience a bug to be fixed.

Most of the code building games use a robot theme where the narrative builds on the
idea that robots (e.g. computers) need input from the player to complete a task. Although
three games distinguish their robots as animal robots, these games could use more
variety in thematic choices. Such robot-inspired themes may reinforce current stereotypes
around computing. Master et al. (2016) found that simply adding stereotypical objects
(e.g. computer parts, electronics) to an image of a computer science classroom influenced
female interest in an introductory computer science course. Adding more diversity in the
themes applied at this level may attract a larger audience to these types of games (Rusk
et al., 2008). In a recent systematic review of CS books targeting K-8 students, Haroldson
and Ballard (2020) found that while there is representation of females in the CS books,
adult males of color are still lacking. The authors argue that to increase and broaden
participation in the field, it is necessary for young learners to see representative examples
of themselves in the field. Similar to books, we argue that tabletop games can also play
a role in broadening participation by considering who is represented in the tabletop
game themes and narratives. Further, by exploring more diverse themes and narratives in
CS tabletop board games, such games may help learners make connections between their
interests and the CS field.

While most of these games involved a simple narrative, two of the eight games in this
category situated the game within a complex narrative. Complex narratives may help
young learners make connections between gameplay and the CT skills that the game
promotes. Further, such narratives may provide an anchor for transferring skills learned in
the game into a future digital programming environment (Bers, 2019). Nevertheless,
complex narratives may distract young learners; thus, the use of narratives should be
carefully considered. The learning claims within these games focus more on developing
skills related to the design of a solution. Some games do add secondary game mechanics
in advanced levels of the game that target concepts related to implementing a design,
such as control statements and data.

Games that target older learners tend to use game designs found in the Code Execution
Games category. These games focus on scripting knowledge as learners are presented with
code, either written in plain English or in a programming language (e.g. Java), to execute.
Executing code in these games determines how the player moves through a linear board.
None of the games in this category made use of a complex narrative, and because the code
being executed can be placed either on a card or the board, there is no need to apply
a logical narrative to explain the task. Thus, in this category, greater variety of themes are
used to mask the repetitious execution of codes. A review on the use of games in higher
education CS classes found that many games have students execute algorithms in
a competitive gaming context to add entertainment to the memorization task (Battistella
& Gresse, 2016). Likewise, the designers of these games appear to view CT and/or computer
science as a task of memorizing syntax or semantics associated with syntax. One way to
expand on the executing code design is to allow players to combine cards with executable
code into larger functions, as is done in the game Potato Pirates (Huang et al., 2020). In
Potato Pirates players can combine up to three cards to build an attack on other players
(See Figure 6). Each card played also contains code like those in many of the Code Execution
Games, but players can build on that code in a meaningful way.

20 F. J. POOLE ET AL.

Older learners were also targeted by games in the puzzle category. These embedded CT,
both as designing and implementing a solution, into puzzles that required either pattern
matching or pattern identification to be solved. Two puzzle games did not include designs
from other game categories, and four puzzle games included designs from the code building
games category. In both the combination and non-combination puzzle games, the difficulty
of the puzzles often requires a trial-and-error approach in which the player puts forth an
idea, tests it, reflects on the idea, and then tries a new approach. These games also have
a greater variety of themes. In future designs for puzzle games, designers should also explore
designs that encourage collaborative play (Berland & Lee, 2011; Zagal et al., 2006). While
many of these games allow players to cooperate with a peer, most are designed for a single
player. In our own research, we find that when pairs work on puzzles, one player often takes
over and solves the puzzle independently. Further, researchers have noted that a primary
benefit of tabletop games is the social interaction that occurs naturally when multiple
players engage with the physical environment (Battistella & Gresse, 2016).

Our taxonomy of tabletop games designed to promote CT learning provides a road
map for future designers by illustrating how past designs have been leveraged for specific
age groups to encourage CT learning in unique ways. Designing tabletop games for
learning is a complex process that not only considers the designer’s intent and rationale
for a design, but also how those designs are realized and enacted by players (Engelstein,
2017). By exploring how past games have leveraged game and learning mechanics to
target CT, designers can either apply similar mechanics to games with novel themes and
narratives or they can expand on and improve existing mechanics.

Implications for formal and informal learning contexts

In the content analysis, we sort games by their primary game mechanics and identify
their learning claims. Then within each category, we provide a design case to illustrate

Figure 6. Stacking up action cards in Potato Pirates.

COMPUTER SCIENCE EDUCATION 21

how the game mechanics are assumed to promote learning. It should first be noted
that the learning claims marketed by the board game publishers should be heeded
with caution. Many of these games make the assumption that simply playing the game
will lead to development of CT concepts. Much like the debate around the effective-
ness of LOGO as a tool for teaching problem solving and thinking skills (Pea, 1983;
Solomon et al., 2020), how instruction and pedagogy are integrated with the board
game is likely the strongest determinant of whether such learning claims can be
realized.

Thus, game mechanics that promote learning may be accessible starting points for
educators to focus on when bringing tabletop games into the classroom or an informal
learning space to promote CT. For instance, in code building games educators could leverage
the action queue; in Code Execution Games the focus could be on control statements, and
educators looking to develop problem-solving skills associated with CT may consider using
the puzzle games. However, many of the game mechanics that are designed for learning
control statements and data concepts may not be salient to the learner. These game
mechanics may improve the game experience, but at some point, an educator may need
to help students see how such concepts relate to computing. Past research has drawn on
principles from expansive framing (Engle et al., 2012) to make connections between game
mechanics in tabletop games that are similar to their digital instantiations (Lee et al., 2020).
For instance, in the game On the Brink, players are presented with a color-coded action queue
(e.g. blue, yellow, red), in which they can place two movement cards on each color. Then
when a player’s game piece lands on a specific color they enact the code that is associated
with that color. Focusing on this game mechanic, researchers designed a curriculum that
promotes transfer from an analog gaming environment to a digital programming environ-
ment by emphasizing the similarities between the action queue and procedures in the digital
environment. A similar framework could be applied to the Code Execution Games to help
students see how the die simulates variables or to point out similarities between quasi-code
and syntax used in authentic programming languages. Given the trial-and-error approach
that is often required in the puzzle games, educators may provide support by demonstrating
the debugging process in which players attempt a solution, identify a bug, reflect on their
original solution, and then propose an adapted solution.

Our taxonomy provides educators with a starting point in determining which type of
game is best for their context. In other words, if educators are working with younger
learners, they may start with Code Building Games. Once, educators have determined which
game they will teach with, they can apply the LM-GM model as we did in this study to
identify moments when learning is most probable. Then, by understanding where learning
is occurring within the game, educators can design lessons that highlight, enhance, and/or
extend learning opportunities found within the game. Finally, considering how the game is
representing CS, the instructor should consider ways of expanding the learners view of CS
and/or breaking down stereotypes that may exist within the games.

Implications for research

For researchers, we believe that our taxonomy not only highlights several potential areas
for research, but it also provides a guide for what that research might look like. First,

22 F. J. POOLE ET AL.

several researchers have chosen to design games for their particular context of study.
While some of these games may provide some unique aspects, many of the researcher-
designed games could have been replaced by a commercial game.

Second, in terms of areas rich in research potential, each of the game types within
our taxonomy include a set of assumptions about learning based on the game design.
For example, within the code building games, there is an assumption that by allowing
players to create and enact an action queue of movement cards, players will develop
skills specifically related to algorithmic design. Researchers have designed assessments
(Clarke-Midura et al., 2021; Grover & Pea, 2013; Román-González et al., 2017; Zhao &
Shute, 2019) that could be used to determine if these games do in fact promote CT in
terms of algorithmic design. Further, code building games often increase in difficulty by
adding game mechanics around building functions and obstacles to complicate solu-
tion paths. Given that these games use directional cards in action queues to build code,
researchers could explore how the visual and spatial aspects of action queues supports
learning and understanding of computer science concepts like functions and control
statements.

Code Execution Games makes two primary assumptions. First, they assume that by
playing the game players will learn programming languages and/or structures as a by-
product of seeing the code and executing it. Research could explore what learning occurs
as a result of playing the game, and how long the players need to play to develop this
knowledge. In linear path games, where there is only one direction and one solution,
learners may not find the game interesting after a game has been completed a few times.
Thus, researchers may want to explore how interest changes over continued play.
Secondly, there is an implicit assumption that by simply learning a script, players will
learn to program. Thus, there is still a question of transfer. Are learners able to take the
scripting knowledge learned in these games and apply it to a programming environment?
Finally, given that these games tend to focus on control statements, exploring how
executing code within these games supports learning and understanding of these con-
cepts is another area for potential research.

In terms of puzzle and combination-based games, more so than games in other
categories, there is an assumption that by playing games and implicitly engaging with
concepts that involve control statements and data, players will notice and learn something
about these concepts. However, given that such concepts are embedded within game
mechanics and thus not overtly clear to the players, research should investigate if players
are aware of and if they notice these concepts that puzzles games claim to promote.
Furthermore, given the challenge and problem solving involved in these games, player
experience and frustration levels should be considered when exploring the efficacy of these
games as learning environments. Research should consider the approaches mentioned in
the previous section on implications for teaching and explore ways of leveraging these
unplugged learning environments in formal and informal spaces. Further research could
explore if these unplugged games work? If so, when and under what conditions? Finally,
given the differences in how tabletop games represent the CS field and the objective of
introducing programming at a young age, researchers should explore how younger lear-
ners perceive programming and the CS field after playing of these tabletop games.

COMPUTER SCIENCE EDUCATION 23

Conclusion

The recent influx of commercial CT tabletop games is a nascent trend for novice and
young emergent coders. However, having too many options can also make it difficult to
choose an appropriate game for one’s context. In this study, we created a taxonomy of CT
tabletop games that identified three primary categories (e.g. code building, executing
code, and puzzle games) and one category that includes a combination of the first three
categories. Games that fall into our discrete categories share similar learning claims, target
audiences, and game mechanics. In our discussion we illustrate how our taxonomy offers
a starting place for instructors who want to explore the use of tabletop games for
introducing CT concepts in unplugged settings, suggestions for designers looking to
build similar games, and areas for investigation for researchers.

Acknowledgments

This paper was funded by the National Science Foundation (NSF) grant #1837224. The opinions
expressed herein are those of the authors and do not necessarily reflect those of the National
Science Foundation. The authors thank Matthew Berland, Shuchi Grover, and Yasmin Kafai for
encouraging a categorization and illustration of current commercial computer science board
game types be completed and disseminated for the field of CS Education.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Institute of Museum and Library Services [RE-31-16-0013-16];
National Science Foundation [DRL-1837224].This work was supported by National Science
Foundation (NSF) under Grant number 1837224.

ORCID

Jody Clarke-Midura http://orcid.org/0000-0001-5434-0324
Victor R. Lee http://orcid.org/0000-0001-6434-7589

Data Availability Statement

The data that support the findings of this study are available from the corresponding author, [F.J.P],
upon reasonable request.

References

Ames, M. G. (2018). Hackers, computers, and cooperation: A critical history of Logo and constructionist
learning. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW), 1–19.

Apostolellis, P., Stewart, M., Frisina, C., & Kafura, D. (2014). RaBit EscAPE: A board game for
computational thinking. In Proceedings of the 2014 Conference on Interaction Design and

24 F. J. POOLE ET AL.

Children (IDC '14). Association for Computing Machinery, New York, NY, USA, 349–352. https://doi.
org/10.1145/2593968.2610489

Battistella, P., & Gresse, V. W. C. (2016). Games for teaching computing in higher education –
a systematic review. IEEE Technology and Engineering Education, 9(1), 8–30.

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged: School
students doing real computing without computers. The New Zealand Journal of Applied
Computing and Information Technology, 13(1), 20–29.

Bell, T., & Roberts, J. (2016). Computational thinking is more about humans than computers. I SET
2016-1 http://dx.doi.org/10.18296/set.0030 .

Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as a site for distributed
computational thinking. International Journal of Game-Based Learning (IJGBL), 1(2), 65–81.
https://doi.org/10.4018/ijgbl .

Bers, M. U. (2019). Coding as another language: A pedagogical approach for teaching computer
science in early childhood. Journal of Computers in Education, 6(4), 499–528. https://doi.org/10.
1007/s40692-019-00147-3

Beylefeld, D. A. A., & Struwig, M. C. (2007). A gaming approach to learning medical microbiology:
Students’ experiences of flow. Medical Teacher, 29(9–10), 933–940. https://doi.org/10.1080/
01421590701601550

Blanco, A. A., & Engström, H. (2020). Patterns in mainstream programming games. Int. J. International
Journal of Serious Games, 7(1), 97–126. https://doi.org/10.17083/ijsg.v7i1.335

Boling, E. (2010). The need for design cases: Disseminating design knowledge. International Journal
of Designs for Learning, 1 (1), 1-8. Retrieved from http://scholarworks.iu.edu/journals/index.php/
ijdl/index .

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational
Research Association, Vancouver, Canada. Retrieved from http://web.media.mit.edu/»kbrennan/
files/Brennan_Resnick_AERA2012_CT.pdf .

Castronova, E., & Knowles, I. (2015). Modding board games into serious games: The case of Climate
Policy. International Journal of Serious Games, 2(3), 41–62. https://doi.org/10.17083/ijsg.v2i3.77

Clarke-Midura, J., Silvis, D., Shumway, J., Lee, V. R., & Kozlowski, J. (2021). Developing a Kindergarten
Computational Thinking Assessment Using Evidence-Centered Design: The Case of Algorithmic
Thinking. Computer Science Education, 31(2), 117–140. https://doi.org/https://doi.org/10.1080/
08993408.2021.1877988

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. Harper-Perennial.
Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness:

Defining “gamification”. In Paper presented at the Proceedings of the 15th international academic
MindTrek conference: Envisioning future media environments. Finland: Tampere

Elofsson, J., Gustafson, S., Samuelsson, J., & Träff, U. (2016). Playing number board games supports
5-year-old children’s early mathematical development. The Journal of Mathematical Behavior, 43,
134–147. https://doi.org/10.1016/j.jmathb.2016.07.003

Engelstein, G. (2017). Gametek: The Math and Science of Gaming. USA: Ludology Pre.
Engle, R. A., Lam, D. P., Meyer, X. S., & Nix, S. E. (2012). How does expansive framing promote

transfer? Several proposed explanations and a research agenda for investigating them.
Educational Psychologist, 47(3), 215–231. https://doi.org/10.1080/00461520.2012.695678

Garcia, A. (2017). Privilege, power, and dungeons & dragons: how systems shape racial and gender
identities in tabletop role-playing games. Mind, Culture, and Activity, 24(3), 232–246. https://doi.
org/10.1080/10749039.2017.1293691

Gresse, V. W. C., de Medeiros, S., Filho, G., Petri, G., R., Pinheiro, D. C., Ferreira, F., & Hauck, J., N. (2019).
SplashCode–A board game for learning an understanding of algorithms in middle school.
Informatics in Education, 18(2), 259–280. https://doi.org/10.15388/infedu.2019.12

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field.
Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051

Guzdial, M., Kay, A., Norris, C., & Soloway, E. (2019). Computational thinking should just be good
thinking. Commun. Communications of the ACM, 62(11), 28–30. https://doi.org/10.1145/3363181

COMPUTER SCIENCE EDUCATION 25

https://doi.org/10.1145/2593968.2610489
https://doi.org/10.1145/2593968.2610489
http://dx.doi.org/10.18296/set.0030
https://doi.org/10.4018/ijgbl
https://doi.org/10.1007/s40692-019-00147-3
https://doi.org/10.1007/s40692-019-00147-3
https://doi.org/10.1080/01421590701601550
https://doi.org/10.1080/01421590701601550
https://doi.org/10.17083/ijsg.v7i1.335
http://scholarworks.iu.edu/journals/index.php/ijdl/index
http://scholarworks.iu.edu/journals/index.php/ijdl/index
http://web.media.mit.edu/%BBkbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://web.media.mit.edu/%BBkbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
https://doi.org/10.17083/ijsg.v2i3.77
https://doi.org/https://doi.org/10.1080/08993408.2021.1877988
https://doi.org/https://doi.org/10.1080/08993408.2021.1877988
https://doi.org/10.1016/j.jmathb.2016.07.003
https://doi.org/10.1080/00461520.2012.695678
https://doi.org/10.1080/10749039.2017.1293691
https://doi.org/10.1080/10749039.2017.1293691
https://doi.org/10.15388/infedu.2019.12
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1145/3363181

Habgood, M. J., & Ainsworth, S. E. (2011). Motivating children to learn effectively: Exploring the value
of intrinsic integration in educational games. The Journal of the Learning Sciences, 20(2), 169–206.
https://doi.org/10.1080/10508406.2010.508029

Horn, M. S., Weintrop, D., Beheshti, E., & Olson, I. D. (2012). Spinners, dice, and pawns: Using board
games to prepare for agent-based modeling activities. In American Educational Research
Association annual meeting. Vancouver, Canada. Retrieved from http://ccl.northwestern.edu/
2012/AERA2012.pdf .

Huang, W., Batura, A., & Seah, T. L. (2020). The design and implementation of “unplugged” game-based
learning in computing education. SocArXiv. https://doi.org/10.31235/osf.io/ykq82

Jimenez, O., Arena, D., & Acholonu, U. (2011). Tug-of-war: A card game for pulling students to
fractions fluency. Proceedings of the 7th International Conference on Games, Learning, & Society
Conference (GLS '11), 119-127. ETC Press. Pittsburg, USA.

Kafai, Y., & Vasudevan, V. (2015). Hi-Lo tech games: Crafting, coding and collaboration of augmented
board games by high school youth. Proceedings of the 14th International Conference on Interaction
Design and Children, 130–139. Association for Computing Machinery. New York, USA.

Kalmpourtzis, G., & Romero, M. (2020). Constructive alignment of learning mechanics and game
mechanics in Serious Game design in Higher Education. International Journal of Serious Games, 7
(4), 75–88. https://doi.org/10.17083/ijsg.v7i4.361

Kaufman, G., & Flanagan, M. (2016). High-low split: Divergent cognitive construal levels triggered by
digital and non-digital platforms. Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, 2773–2777. San Jose, USA: Association for Computing Machinery.

King, C., & Cazessus, M. (2014). Teaching with Audacity: A board game for urban studies. 8th
European conference on Games Based Learning: ECGBL2014, 272–280. Berlin, Germany:
Academic Conferences and Publishing International.

Kuo, W.-C., & Hsu, T.-C. (2020). Learning computational thinking without a computer: How computa-
tional participation happens in a computational thinking board game. The Asia-Pacific Education
Researcher, 29(1), 67–83. https://doi.org/10.1007/s40299-019-00479-9

Lee, V. R. (2020). Let’s cut to commercial: Where research, evaluation, and design of learning games
should go next. Educational Technology Research and Development. 69, 145–148. https://doi.org/
10.1007/s11423-020-09865-3

Lee, V. R., Poole, F., Clarke-Midura, J., Recker, M., & Rasmussen, M. (2020). Introducing Coding
through Tabletop Board Games and Their Digital Instantiations across Elementary Classrooms
and School Libraries. Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, 787–793. https://doi.org/10.1145/3328778.3366917

Lee, V. R., Rogowski, A., Shehzad, U., & Recker, M. (2021). Unplugged-to-plugged computer science
at the library. Teacher Librarian, 48(3), 34–39. Retrieved from http://ezproxy.msu.edu/login?url=
https://www-proquest-com.proxy1.cl.msu.edu/magazines/unplugged-plugged-computer-
science-at-library/docview/2501270722/se-2?accountid=12598

Lieberoth, A. (2015). Shallow gamification: Testing psychological effects of framing an activity as a
game. Games and Culture, 10(3), 229–248. https://doi.org/10.1177/1555412014559978

Lim, T., Louchart, S., Suttie, N., Ritchie, J. M., Aylett, R. S., Sta˘nescu, I. A. et al (2013). Strategies for
effective digital games development and implementation. In Y. Baek & N. Whitton (Eds), Cases on
digital game-based learning: methods, models, and strategies, IGI global (pp. 168–198). Hershey, PA:
Information Science Reference. https://doi.org/10.4018/978-1-4666-2848-9.ch010

Lin, T.-J., Lin, T.-C., Potvin, P., & Tsai, -C.-C. (2019). Research trends in science education from 2013 to
2017: A systematic content analysis of publications in selected journals. International Journal of
Science Education, 41(3), 367–387. https://doi.org/10.1080/09500693.2018.1550274

Looi, C. K., How, M. L., Longkai, W., Seow, P., & Liu, L. (2018). Analysis of linkages between an
unplugged activity and the development of computational thinking. Computer Science Education,
28(3), 255–279. https://doi.org/10.1080/08993408.2018.1533297

Master, A., Cheryan, S., & Meltzoff, A. N. (2016). Computing whether she belongs: Stereotypes
undermine girls’ interest and sense of belonging in computer science. Journal of Educational
Psychology, 108(3), 424. https://doi.org/10.1037/edu0000061

26 F. J. POOLE ET AL.

https://doi.org/10.1080/10508406.2010.508029
http://ccl.northwestern.edu/2012/AERA2012.pdf
http://ccl.northwestern.edu/2012/AERA2012.pdf
https://doi.org/10.31235/osf.io/ykq82
https://doi.org/10.17083/ijsg.v7i4.361
https://doi.org/10.1007/s40299-019-00479-9
https://doi.org/10.1007/s11423-020-09865-3
https://doi.org/10.1007/s11423-020-09865-3
https://doi.org/10.1145/3328778.3366917
http://ezproxy.msu.edu/login?url=https://www-proquest-com.proxy1.cl.msu.edu/magazines/unplugged-plugged-computer-science-at-library/docview/2501270722/se-2?accountid=12598
http://ezproxy.msu.edu/login?url=https://www-proquest-com.proxy1.cl.msu.edu/magazines/unplugged-plugged-computer-science-at-library/docview/2501270722/se-2?accountid=12598
http://ezproxy.msu.edu/login?url=https://www-proquest-com.proxy1.cl.msu.edu/magazines/unplugged-plugged-computer-science-at-library/docview/2501270722/se-2?accountid=12598
https://doi.org/10.1177/1555412014559978
https://doi.org/10.4018/978-1-4666-2848-9.ch010
https://doi.org/10.1080/09500693.2018.1550274
https://doi.org/10.1080/08993408.2018.1533297
https://doi.org/10.1037/edu0000061

Nicholson, S. (2011). Making gameplay matter: Designing modern educational tabletop games.
Knowledge Quest, 40(1), 60. Retrieved from http://ezproxy.msu.edu/login?url=https://www-pro
quest-com.proxy1.cl.msu.edu/scholarly-journals/making-gameplay-matter-designing-modern/
docview/1018482441/se-2?accountid=12598

Ogershok, P. R., & Cottrell, S. (2004). The pediatric board game. Medical Teacher, 26(6), 514–517.
https://doi.org/10.1080/01421590410001711553

Pantic, K., Clarke-Midura, J., Poole, F., Roller, J., & Allan, V. (2018). Drawing a computer scientist:
Stereotypical representations or lack of awareness? Computer Science Education, 28(3), 232–254.
https://doi.org/10.1080/08993408.2018.1533780

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
Pea, R. D. (1983). Logo Programming and Problem Solving [Technical Report No. 12.], American

Educational Research Association Symposium. Montreal, Canada.
Poole, F., Clarke-Midura, J., Sun, C., & Lam, K. (2019). Exploring the pedagogical affordances of

a collaborative board game in a dual language immersion classroom. Foreign Language Annals, 52
(4), 753–775. https://doi.org/10.1111/flan.12425

Quintana, C., Quintana, R., & Bricker, L. (2020). The pragmatics of board games in K-12 science
classrooms. In M. Gresalfi & I. S. Horn (Eds.), The Interdisciplinarity of the Learning Sciences, 14th
International Conference of the Learning Sciences (ICLS) 2020, Volume 3 (pp. 1809–1810). Nashville,
Tennessee: International Society of the Learning Sciences.

Reeve, K., Rossiter, K., & Risdon, C. (2008). The Last Straw! A board game on the social determinants of
health. Medical Education, 42(11), 1125–1126. https://doi.org/10.1111/j.1365-2923.2008.03215.x

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which cognitive abilities
underlie computational thinking? Criterion validity of the computational thinking test. Computers
in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047

Rose, T. M. (2011). A board game to assist pharmacy students in learning metabolic pathways.
American Journal of Pharmaceutical Education, 75(9), 9. https://doi.org/10.5688/ajpe759183

Rusk, N., Resnick, M., Berg, R., & Pezalla-Granlund, M. (2008). New pathways into robotics: strategies
for broadening participation. Journal of Science Education and Technology, 17(1), 59–69. https://
doi.org/10.1007/s10956-007-9082

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational
Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—But not circular ones—
Improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology,
101(3), 545–560. https://doi.org/10.1037/a0014239

Singh, J., Dorairaj, S. K., & Woods, P. (2007). Learning computer programming using a board game–
case study on C-Jump. Proc. of the Int. Symposium on Information and Communications
Technologies, Kuala Lumpur, Malaysia.

Skillen, J., Berner, V.-D., & Seitz-Stein, K. (2018). The rule counts! Acquisition of mathematical
competencies with a number board game. The Journal of Educational Research, 111(5),
554–563. https://doi.org/10.1080/00220671.2017.1313187

Solomon, C., Harvey, B., Kahn, K., Lieberman, H., Miller, M., Minsky, M., Papert, A., & Silverman, B.
(2020). History of Logo. Proc. ACM Program.4, HOPL,Article 79: June 2020 1–66 https://doi.org/10.
1145/3386329

Struwig, M. C., Beylefeld, A. A., & Joubert, G. (2014). Learning medical microbiology and infectious
diseases by means of a board game: Can it work? Innovations in Education and Teaching
International, 51(4), 389–399. https://doi.org/10.1080/14703297.2013.774139

Tang, K.-Y., Chou, T.-L., & Tsai, -C.-C. (2020). A content analysis of computational thinking research:
An international publication trends and research typology. The Asia-Pacific Education Researcher,
29(1), 9–19. https://doi.org/10.1007/s40299-019-00442-8

Thomas, M. K., Shyjka, A., Kumm, S., & Gjomemo, R. (2019). Educational design research for the
development of a collectible card game for cybersecurity learning. Journal of Formative Design in
Learning, 3(1), 27–38. https://doi.org/10.1007/s41686-019-00027-0

COMPUTER SCIENCE EDUCATION 27

http://ezproxy.msu.edu/login?url=https://www-proquest-com.proxy1.cl.msu.edu/scholarly-journals/making-gameplay-matter-designing-modern/docview/1018482441/se-2?accountid=12598
http://ezproxy.msu.edu/login?url=https://www-proquest-com.proxy1.cl.msu.edu/scholarly-journals/making-gameplay-matter-designing-modern/docview/1018482441/se-2?accountid=12598
http://ezproxy.msu.edu/login?url=https://www-proquest-com.proxy1.cl.msu.edu/scholarly-journals/making-gameplay-matter-designing-modern/docview/1018482441/se-2?accountid=12598
https://doi.org/10.1080/01421590410001711553
https://doi.org/10.1080/08993408.2018.1533780
https://doi.org/10.1111/flan.12425
https://doi.org/10.1111/j.1365-2923.2008.03215.x
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.5688/ajpe759183
https://doi.org/10.1007/s10956-007-9082
https://doi.org/10.1007/s10956-007-9082
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1037/a0014239
https://doi.org/10.1080/00220671.2017.1313187
https://doi.org/10.1145/3386329
https://doi.org/10.1145/3386329
https://doi.org/10.1080/14703297.2013.774139
https://doi.org/10.1007/s40299-019-00442-8
https://doi.org/10.1007/s41686-019-00027-0

Tsarava, K., Moeller, K., & Ninaus, M. (2018). Training computational thinking through board games:
The case of crabs & turtles. International Journal of Serious Games, 5(2), 25–44. https://doi.org/10.
17083/ijsg.v5i2.248

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of Science Education
and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.
org/10.1145/1118178.1118215

Zagal, J. P., Rick, J., & Hsi, I. (2006). Collaborative games: Lessons learned from board games.
Simulation & Gaming, 37(1), 24–40. https://doi.org/10.1177/1046878105282279

Zhao, W., & Shute, V. J. (2019). Can playing a video game foster computational thinking skills?
Computers & Education, 141, 103633. https://doi.org/10.1016/j.compedu.2019.103633

28 F. J. POOLE ET AL.

https://doi.org/10.17083/ijsg.v5i2.248
https://doi.org/10.17083/ijsg.v5i2.248
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1177/1046878105282279
https://doi.org/10.1016/j.compedu.2019.103633

	Abstract
	Introduction
	Literature review
	CT concepts
	Research on tabletop games for learning
	Research on tabletop games for CT

	Methods
	Search strategy
	Inclusion and exclusion criteria

	Content analysis
	Design cases

	Results
	Code building games
	Design case: robot turtles

	Code execution games
	Design Case: Coding Farmers

	Puzzle Games
	Design case: rover control

	Combination games

	Discussion
	Representations of CS
	Implications for design
	Implications for formal and informal learning contexts
	Implications for research

	Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	Data Availability Statement
	References

